* Make the script scraper context-aware
Connect the context to the command execution. This means command
execution can be aborted if the context is canceled. The context is
usually bound to user-interaction, i.e., a scraper operation issued
by the user. Hence, it seems correct to abort a command if the user
aborts.
* Enable errchkjson
Some json marshal calls are *safe* in that they can never fail. This is
conditional on the types of the the data being encoded. errchkjson finds
those calls which are unsafe, and also not checked for errors.
Add logging warnings to the place where unsafe encodings might happen.
This can help uncover usage bugs early in stash if they are tripped,
making debugging easier.
While here, keep the checker enabled in the linter to capture future
uses of json marshalling.
* Pass the context for zip file scanning.
* Pass the context in scanning
* Pass context, replace context.TODO()
Where applicable, pass the context down toward the lower functions in
the call stack. Replace uses of context.TODO() with the passed context.
This makes the code more context-aware, and you can rely on aborting
contexts to clean up subsystems to a far greater extent now.
I've left the cases where there is a context in a struct. My gut feeling
is that they have solutions that are nice, but they require more deep
thinking to unveil how to handle it.
* Remove context from task-structs
As a rule, contexts are better passed explicitly to functions than they
are passed implicitly via structs. In the case of tasks, we already
have a valid context in scope when creating the struct, so remove ctx
from the struct and use the scoped context instead.
With this change it is clear that the scanning functions are under a
context, and the task-starting caller has jurisdiction over the context
and its lifetime. A reader of the code don't have to figure out where
the context are coming from anymore.
While here, connect context.TODO() to the newly scoped context in most
of the scan code.
* Remove context from autotag struct too
* Make more context-passing explicit
In all of these cases, there is an applicable context which is close
in the call-tree. Hook up to this context.
* Simplify context passing in manager
The managers context handling generally wants to use an outer context
if applicable. However, the code doesn't pass it explicitly, but stores
it in a struct. Pull out the context from the struct and use it to
explicitly pass it.
At a later point in time, we probably want to handle this by handing
over the job to a different (program-lifetime) context for background
jobs, but this will do for a start.
* Move main to cmd
* Move api to internal
* Move logger and manager to internal
* Move shell hiding code to separate package
* Decouple job from desktop and utils
* Decouple session from config
* Move static into internal
* Decouple config from dlna
* Move desktop to internal
* Move dlna to internal
* Decouple remaining packages from config
* Move config into internal
* Move jsonschema and paths to models
* Make ffmpeg functions private
* Move file utility methods into fsutil package
* Move symwalk into fsutil
* Move single-use util functions into client package
* Move slice functions to separate packages
* Add env var to suppress windowsgui arg
* Move hash functions into separate package
* Move identify to internal
* Move autotag to internal
* Touch UI when generating backend
* Continue identify if source fails
* Handle empty result set correctly
* Parse null values from scraper script correctly
* Omit warning when json selector value missing
* Return nil when scraped item not found
* Fix graphql validation errors
* Push scrapeByURL into scrapers
Replace ScrapePerfomerByURL, ScrapeMovie..., ... with ScrapeByURL in
the scraperActionImpl interface. This allows us to delete a lot of
repeated code in the scrapers and replace the central part with a
switch on the scraper type.
* Fold name scraping into one call
Follow up on scraper refactoring. Name scrapers use the same code path.
This allows us to restructure some code and kill some functions, adding
variance to the name scraping code. It allows us to remove some code
repetition as well.
* Do not export loop refs.
* Simplify fragment scraping
Generalize fragment scrapers into ScrapeByFragment. This simplifies
fragment code flows into a simpler pathing which should be easier
to handle in the future.
* Eliminate more context.TODO()
In a number of cases, we have a context now. Use the context rather than
TODO() for those cases in order to make those operations cancellable.
* Pass the context for the stashbox scraper
This removes all context.TODO() in the path of the stashbox scraper,
and replaces it with the context that's present on each of the paths.
* Pass the context into subscrapers
Mostly a mechanical update, where we pass in the context for
subscraping. This removes the final context.TODO() in the scraper
code.
* Warn on unknown fields from scripts
A common mistake for new script writers are that they return fields
not known to stash. For instance the name "description" is used rather
than "details".
Decode disallowing unknown fields. If this fails, use a tee-reader to
fall back to the old behavior, but print a warning for the user in this
case. Thus, we retain the old behavior, but print warnings for scripts
which fails the more strict unknown-fields detection.
* Nil-check before running the postprocessing chain
Fixes panics when scraping returns nil values.
* Lift nil-ness in post-postprocessing
If the struct we are trying to post-process is nil, we shouldn't
enter the postprocessing flow at all. Pass the struct as a value
rather than a pointer, eliminating nil-checks as we go. Use the
top-level postProcess call to make the nil-check and then abort there
if the object we are looking at is nil.
* Allow conversion routines to handle values
If we have a non-pointer type in the interface, we should also convert
those into ScrapedContent. Otherwise we get errors on deprecated
functions.
* Simplify scraper listing
Introduce an enum, scraper.Kind, which explains what we are looking
for. Make it possible to match this from a scraper struct.
Use the enum to rewrite all the listing code to use the same code path.
* Use a map, nitpick ScrapePerformerList
Let the cache store a map from ID of a scraper to the scraper. This
improves lookups when there are many scrapers, making it practically
O(1) rather than O(n). If many scrapers are stored, this is faster.
Since range expressions work unchanged, we don't have to change much,
and things will still work.
make Kind a Stringer
Rename ScraperPerformerList -> ScraperPerformerQuery since that name
is used in the other scrapers, and we value consistency.
Tune ScraperPerformerQuery:
* Return static errors
* Use the new functionality
* When loading scrapers, do so directly
Rather than first walking the directory structure to obtain file paths,
fold the load directly in the the filepath walk. This makes the code
for more direct.
* Use static ErrNotFound
If a scraper isn't found, return one static error. This paves the way
for eventually doing our own error-presenter in gqlgen.
* Store the cache in the Resolver state
Putting the scraperCache directly in the resolver avoids the need to
call manager.GetInstance() all over the place to get access to the
scraper cache. The cache is stored by pointer, so it should be safe,
since the cache will just update its internal state rather than being
overwritten.
We can now utilize the resolver state to grab the cache where needed.
While here, pass context.Context from the resolver down into a function,
which removes a context.TODO()
* Introduce ScrapedContent
Create a union in the GraphQL schema for all scraped content. This
simplifies the internal implementation because we get variance on
the output content type.
Introduce a new type ScrapedContentType which signifies the scraped
content you want as a caller.
Use these to generalize the List interface and the URL scraping
interface.
* Simplify the scraper API
Introduce a new interface for scraping. This interface is then
used in the upper half of the scraper code, to make the code use one
code flow rather than multiple code flows. Variance is currently at
the old scraper structure.
Add extending interfaces for the different ways of invoking scrapes.
Use interface conversions to convert a scraper from the cache to a
scraper supporting the extra methods.
The return path returns models.ScrapedContent.
Write a general postProcess function in the scraper, handling all
ScrapedContent via type switching. This consolidates all postprocessing
code flows.
Introduce marhsallers in the resolver code for converting ScrapedContent
into the underlying concrete types. Use this to plug the existing
fields in the Query resolver, so everything still works.
* ScrapedContent: add more marshalling functions
Handle all marshalling of ScrapedContent through marhsalling functions.
Removes some hand-rolled early variants of it, and replaces it with
a canonical code flow.
* Support loadByName via scraper_s
In order to temporarily plug a hole in the current implementation, we
use the older implementation as a hook to get the newer implementation
to run.
Later on, this can serve as a guide for how to implement the lower level
bits inside the scrapers themselves. For now, it just enables support.
* Plug the remaining scraper functions for now
Since we would like to have a scraper which works in between refactors,
plug the lower level parts of the scraper for now. It avoids us having
to tackle this part just yet.
* Move postprocessing to its own file
There's enough postprocessing to clutter the main scrapers.go file.
Move all of this into a new file, postprocessing to make the API
simpler. It now lives in scrapers.go.
* Scraper: Invoke API consistency
scraper.Cache.ScrapeByName -> ScrapeName
* Fix scraping scenes by URL
Simple typo. While here, also make a single marshaller nil-aware.
* Introduce scraper groups, consolidate loadByURL
Rename `scraper_s` into `group`. A group is a group of scrapers with
the same identity. This corresponds to a single YAML file for a scraper
configuration. It defines a group which supports different types of
scraping contexts.
Move config into the group, and lift txnManager and globalConfig to
the group.
Because we now return models.ScrapedContent we can use interfaces to
get variance from the different underlying scrapers. Use a type
switch for the URL matcher candidates. And then again for the scrapers.
This consolidates all URL scraping paths into one.
While here, remove the urlMatcher interface which isn't needed. Also
clean up the remaining interfaces for url scraping and delete code
which has no purpose anymore.
* Consolidate fragment scraping in one code path
While here, abide the linters checks.
* Refactor loadByFragment
Give it the same treatment as loadByURL:
Step 1: find a scraperActionImpl which works for the data.
Step 2: use that to scrape
Most of this is simple analysis on the data at hand. It can be pushed
down further in a later commit, but for now we leave it here.
* Remove configScraper, autotag is a scraper
Remove the remains of the configScraper struct. It now lives on in the
group struct. Kill the remaining interfaces from the old implementation
while here.
Remove group.specification since it can now be handled by a simple
func call to spec().
Work through the autotag scraper. It now implements the scraper
interface, so it can be used as a scraper. This also simplifies the
autotag scraper quite a bit since it doens't have to implement a number
of unsupported func calls.
* Simplify the fragment scraper flow
* Pass the context
Eliminate a round of context.TODO() in the scraper code by passing
the calling context down into the subsystem. This will gracefully
allow for termination of remote calls if the client goes away for some
reason in GraphQL requests.
* Improve listScrapers in the schema
Support lists of types we accept.
* Be graceful on nil values in conversion
Supporting nil-values make the API more robust in the
case of partial results in a multi-scrape situation.
* Improve listScrapers: output at-most-once
Use the ID of a scraper to reduce the output set. If a scraper has
been included, don't include it again.
* Consolidate all API level errors into resolver.go
* Reorder files and functions:
scrapers.go -> cache.go:
It almost contains nothing but the cache code.
Move errors into scraper.go from here because
It is a better place to have them living right now
group.go:
All of the group structure. This can now go from
scraper.go, making it more lean. Move group create
from config_scraper to here.
config.go:
Move the `(c config) spec()` call to here.
config_scraper.go:
Empty file by now
* Name-update the scraper interfaces
Use 'via' rather than 'loadBy'.
The scrape happens via a given scrape method, so I think this is a nice
name for it.
* Rename scrapers for consistency.
While here, improve the error formatting, so different errors come
back differently.
* Nuke the freeones field from the GraphQL schema
* Fix autotag interfacing, refactor
The autotag scraper uses a pointer receiver, but the rest of the code
we use for scraping doesn't expect a pointer-receiver. Hence, to fix
the autotag scraper, we change it to be a value receiver, like the
rest of the code.
Fix: viaScene, and viaGallery.
While here, remove a couple of pointer-receiver methods which can be
trivially rewritten into plain functions.
* Protect against pointer interfaces
The underlying code can be a bit inconsistent in what it returns.
Introduce pointer-types in the postprocessing layer and handle them
accordingly for now. Once a better understanding of the lower levels
are understood, we can lift this.
* Move ErrConversion into the models package.
The conversion error pertains to the logic of converting models.
Because of this, it should move there, so it is centralized.
* Be consistent in scraper resolver error handling
If we have a static error
Err = errors.New(..)
Then use it wrapped at the start:
fmt.Errorf("%w: ...context...", Err)
This reads better.
While here, avoid using the underlying Atoi errors: they are verbose,
and like 99% of the time, the user know what is wrong from the input
string, so just give that back.
Also, remove the scraper id from the error contexts: it is implicit,
and the error wouldn't change if we used a different scraper, which
the error message would imply.
* Mark the list*Scrapers() API as deprecated
The same functionality is now present in listScrapers.
* Improve error formatting
Think about how each error is going to be used and tweak them to be
nicer.
* Return a sorted list of scrapers
This helps testing, it's closer to what we had, caches like stable data,
and it is easier for humans. It also makes the output stable, because
map iteration is randomized.
* Fix listScrapers calls to return in ID-order
Since we need the ordering to be by ID in all situations, it is easier
to just generalize the cache listScrapers call to support multiple
scraper types.
This avoids a de-dupe map up the chain, since every scraper is only
considered once. Sorting now happens in the cache listScrapers call.
Use this generalized function in all resolvers, which are now simple
passthroughs.
* Remove UpdateConfig from the scraper cache.
This isn't needed, so get rid of it.
* Pull a context into identify
Scraping scenes in the identify tasks now use a context from up the
call chain.
* Do not store the scraper cache in the resolver.
Scraper caches are updated through
manager.singleton•RefreshScraperCache, so we can't keep a pointer to
it in the resolver. Instead, solve this by adding a fetcher method to
the resolver type. This keeps it local to the resolver, while handling
the problem of updating caches in the configuration.
* Log 3 unchecked errors
Rather than ignore errors, log them at
the WARNING log level.
The server has been functioning without these, so assume they are not at
the ERROR level.
* Log errors in concurrency test
If we can't initialize the configuration, treat the test as a failure.
* Undo the errcheck on configurations for now.
* Handle unchecked errors in pkg/manager
* Resolve unchecked errors
* Handle DLNA/DMS unchecked errors
* Handle error checking in concurrency test
Generalize config initialization, so we can initialize a configuration
without writing it to disk.
Use this in the test case, since otherwise the test fails to write.
* Handle the remaining unchecked errors
* Heed gosimple in update test
* Use one-line if-initializer statements
While here, fix a wrong variable capture error.
* testing.T doesn't support %w
use %v instead which is supported.
* Remove unused query builder functions
The Int/String criterion handler functions are now generalized.
Thus, there's no need to keep these functions around anymore.
* Mark filterBuilder.addRecursiveWith nolint
The function is useful in the future and no other refactors are looking
nice.
Keep the function around, but tell the linter to ignore it.
* Remove utils.Btoi
There are no users of this utility function
* Return error on scan failure
If we fail to scan the row when looking for the
unique checksum index, then report the error upwards.
* Fix comments on exported functions
* Fix typos
* Fix startup error
* Fix logs from scraper and plugins not being shown in UI
Using `logger.` in the logger package to write logs is "incorrect". This
as the package contains a variable named `logger` which contains the
logrus instance. So instead of the log line being handled by the custom
log implementation / wrapper which makes sure the lines are shown in the
UI as well, it's written to logrus directly meaning the wrapper is
skipped.
This "issue" is obviously triggered because in any other place
`logger.X` can be used and it will used the custom logger package /
wrapper which works fine.
* Add plugin / scraper name to logging output
Indicate which plugin / scraper wrote a log message by including its
name to the `[Scrape]` prefix.
* Add missing addLogItem call
* Unify scraped types
* Make name fields optional
* Unify single scrape queries
* Change UI to use new interfaces
* Add multi scrape interfaces
* Use images instead of image
* find correct python executable
For script scrapers using python, both python and python3 are valid depending on the OS and running environment. To save users from having any issues, this change will find the correct executable for them.
Co-authored-by: bnkai <bnkai@users.noreply.github.com>
* api/urlbuilders/movie: Auto format.
* graphql+pkg+ui: Implement scraping movies by URL.
This patch implements the missing required boilerplate for scraping
movies by URL, using performers and scenes as a reference.
Although this patch contains a big chunck of ground work for enabling
scraping movies by fragment, the feature would require additional
changes to be completely implemented and was not tested.
* graphql+pkg+ui: Scrape movie studio.
Extends and corrects the movie model for the ability to store and
dereference studio IDs with received studio string from the scraper.
This was done with Scenes as a reference. For simplicity the duplication
of having `ScrapedMovieStudio` and `ScrapedSceneStudio` was kept, which
should probably be refactored to be the same type in the model in the
future.
* ui/movies: Add movie scrape dialog.
Adds possibility to update existing movie entries with the URL scraper.
For this the MovieScrapeDialog.tsx was implemented with Performers and
Scenes as a reference. In addition DurationUtils needs to be called one
time for converting seconds from the model to the string that is
displayed in the component. This seemed the least intrusive to me as it
kept a ScrapeResult<string> type compatible with ScrapedInputGroupRow.
* Refactor xpath scraper code
* Make post-process a list
* Add map post-process action
* Add fixed xpath values
* Refactor scrapers into cache
* Refactor into mapped config
* Trim test html