pentoo-overlay/net-wireless/hostapd/files/hostapd-int.conf
2013-05-28 07:06:38 +00:00

252 lines
9.4 KiB
Text

#This is example of using hostapd with a build-in radius server
#enable_karma=0
#karma_black_white=1
#karma_ssid_file=/etc/hostapd/hostapd_karma_ssid
interface=wlan1
ssid=PentooTest
driver=nl80211
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
# Dump file for state information (on SIGUSR1)
dump_file=/tmp/hostapd.dump
ctrl_interface=/var/run/hostapd
#ctrl_interface_group=wheel
ctrl_interface_group=0
country_code=US
hw_mode=b
channel=1
# Beacon interval in kus (1.024 ms) (default: 100; range 15..65535)
beacon_int=100
# DTIM (delivery trafic information message) period (range 1..255):
# number of beacons between DTIMs (1 = every beacon includes DTIM element)
# (default: 2)
dtim_period=2
# Maximum number of stations allowed in station table. New stations will be
# rejected after the station table is full. IEEE 802.11 has a limit of 2007
# different association IDs, so this number should not be larger than that.
# (default: 2007)
max_num_sta=255
rts_threshold=2347
fragm_threshold=2346
macaddr_acl=0
auth_algs=3
# Send empty SSID in beacons and ignore probe request frames that do not
# specify full SSID, i.e., require stations to know SSID.
# default: disabled (0)
# 1 = send empty (length=0) SSID in beacon and ignore probe request for
# broadcast SSID
# 2 = clear SSID (ASCII 0), but keep the original length (this may be required
# with some clients that do not support empty SSID) and ignore probe
# requests for broadcast SSID
ignore_broadcast_ssid=0
##### IEEE 802.11n related configuration ######################################
# ieee80211n: Whether IEEE 802.11n (HT) is enabled
# 0 = disabled (default)
# 1 = enabled
# Note: You will also need to enable WMM for full HT functionality.
#ieee80211n=1
##### IEEE 802.1X-2004 related configuration ##################################
# Require IEEE 802.1X authorization
ieee8021x=1
# IEEE 802.1X/EAPOL version
# hostapd is implemented based on IEEE Std 802.1X-2004 which defines EAPOL
# version 2. However, there are many client implementations that do not handle
# the new version number correctly (they seem to drop the frames completely).
# In order to make hostapd interoperate with these clients, the version number
# can be set to the older version (1) with this configuration value.
eapol_version=1
# Optional displayable message sent with EAP Request-Identity. The first \0
# in this string will be converted to ASCII-0 (nul). This can be used to
# separate network info (comma separated list of attribute=value pairs); see,
# e.g., RFC 4284.
#eap_message=hello
#eap_message=hello\0networkid=netw,nasid=foo,portid=0,NAIRealms=example.com
# WEP rekeying (disabled if key lengths are not set or are set to 0)
# Key lengths for default/broadcast and individual/unicast keys:
# 5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits)
# 13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits)
#wep_key_len_broadcast=5
#wep_key_len_unicast=5
# Rekeying period in seconds. 0 = do not rekey (i.e., set keys only once)
#wep_rekey_period=300
# EAPOL-Key index workaround (set bit7) for WinXP Supplicant (needed only if
# only broadcast keys are used)
eapol_key_index_workaround=0
# EAP reauthentication period in seconds (default: 3600 seconds; 0 = disable
# reauthentication).
#eap_reauth_period=3600
# Use PAE group address (01:80:c2:00:00:03) instead of individual target
# address when sending EAPOL frames with driver=wired. This is the most common
# mechanism used in wired authentication, but it also requires that the port
# is only used by one station.
#use_pae_group_addr=1
##### Integrated EAP server ###################################################
# Optionally, hostapd can be configured to use an integrated EAP server
# to process EAP authentication locally without need for an external RADIUS
# server. This functionality can be used both as a local authentication server
# for IEEE 802.1X/EAPOL and as a RADIUS server for other devices.
# Use integrated EAP server instead of external RADIUS authentication
# server. This is also needed if hostapd is configured to act as a RADIUS
# authentication server.
eap_server=1
# Path for EAP server user database
#eap_user_file=/etc/hostapd/hostapd.eap_user
# CA certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
ca_cert=/etc/hostapd/hostapd/ca.pem
server_cert=/etc/hostapd/hostapd/server.pem
private_key=/etc/hostapd/hostapd/server.pem
private_key_passwd=whatever
# Enable CRL verification.
# Note: hostapd does not yet support CRL downloading based on CDP. Thus, a
# valid CRL signed by the CA is required to be included in the ca_cert file.
# This can be done by using PEM format for CA certificate and CRL and
# concatenating these into one file. Whenever CRL changes, hostapd needs to be
# restarted to take the new CRL into use.
# 0 = do not verify CRLs (default)
# 1 = check the CRL of the user certificate
# 2 = check all CRLs in the certificate path
#check_crl=1
# dh_file: File path to DH/DSA parameters file (in PEM format)
# This is an optional configuration file for setting parameters for an
# ephemeral DH key exchange. In most cases, the default RSA authentication does
# not use this configuration. However, it is possible setup RSA to use
# ephemeral DH key exchange. In addition, ciphers with DSA keys always use
# ephemeral DH keys. This can be used to achieve forward secrecy. If the file
# is in DSA parameters format, it will be automatically converted into DH
# params. This parameter is required if anonymous EAP-FAST is used.
# You can generate DH parameters file with OpenSSL, e.g.,
# "openssl dhparam -out /etc/hostapd/hostapd.dh.pem 1024"
#dh_file=/etc/hostapd/hostapd.dh.pem
# Enable/disable different EAP-FAST provisioning modes:
#0 = provisioning disabled
#1 = only anonymous provisioning allowed
#2 = only authenticated provisioning allowed
#3 = both provisioning modes allowed (default)
#eap_fast_prov=3
##### RADIUS client configuration #############################################
# for IEEE 802.1X with external Authentication Server, IEEE 802.11
# authentication with external ACL for MAC addresses, and accounting
# The own IP address of the access point (used as NAS-IP-Address)
own_ip_addr=127.0.0.1
# Optional NAS-Identifier string for RADIUS messages. When used, this should be
# a unique to the NAS within the scope of the RADIUS server. For example, a
# fully qualified domain name can be used here.
# When using IEEE 802.11r, nas_identifier must be set and must be between 1 and
# 48 octets long.
#nas_identifier=ap.example.com
# RADIUS authentication server
#auth_server_addr=127.0.0.1
#auth_server_port=1812
#auth_server_shared_secret=secret
# RADIUS accounting server
#acct_server_addr=127.0.0.1
#acct_server_port=1813
#acct_server_shared_secret=secret
# Secondary RADIUS servers; to be used if primary one does not reply to
# RADIUS packets. These are optional and there can be more than one secondary
# server listed.
#auth_server_addr=127.0.0.2
#auth_server_port=1812
#auth_server_shared_secret=secret2
#
#acct_server_addr=127.0.0.2
#acct_server_port=1813
#acct_server_shared_secret=secret2
##### RADIUS authentication server configuration ##############################
# hostapd can be used as a RADIUS authentication server for other hosts. This
# requires that the integrated EAP server is also enabled and both
# authentication services are sharing the same configuration.
# File name of the RADIUS clients configuration for the RADIUS server. If this
# commented out, RADIUS server is disabled.
#radius_server_clients=/etc/hostapd/hostapd.radius_clients
# The UDP port number for the RADIUS authentication server
#radius_server_auth_port=1812
# Use IPv6 with RADIUS server (IPv4 will also be supported using IPv6 API)
#radius_server_ipv6=1
##### WPA/IEEE 802.11i configuration ##########################################
# Enable WPA. Setting this variable configures the AP to require WPA (either
# WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either
# wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK.
# For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys),
# RADIUS authentication server must be configured, and WPA-EAP must be included
# in wpa_key_mgmt.
# This field is a bit field that can be used to enable WPA (IEEE 802.11i/D3.0)
# and/or WPA2 (full IEEE 802.11i/RSN):
# bit0 = WPA
# bit1 = IEEE 802.11i/RSN (WPA2) (dot11RSNAEnabled)
#wpa=1
wpa=3
# WPA pre-shared keys for WPA-PSK. This can be either entered as a 256-bit
# secret in hex format (64 hex digits), wpa_psk, or as an ASCII passphrase
# (8..63 characters) that will be converted to PSK. This conversion uses SSID
# so the PSK changes when ASCII passphrase is used and the SSID is changed.
# wpa_psk (dot11RSNAConfigPSKValue)
# wpa_passphrase (dot11RSNAConfigPSKPassPhrase)
#wpa_psk=0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
#wpa_passphrase=secret passphrase
# Optionally, WPA PSKs can be read from a separate text file (containing list
# of (PSK,MAC address) pairs. This allows more than one PSK to be configured.
# Use absolute path name to make sure that the files can be read on SIGHUP
# configuration reloads.
#wpa_psk_file=/etc/hostapd/hostapd.wpa_psk
# Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
# entries are separated with a space. WPA-PSK-SHA256 and WPA-EAP-SHA256 can be
# added to enable SHA256-based stronger algorithms.
# (dot11RSNAConfigAuthenticationSuitesTable)
#wpa_key_mgmt=WPA-PSK WPA-EAP
wpa_key_mgmt=WPA-EAP