jsketcher/web/app/brep/operations/boolean.js
2017-01-09 21:28:06 -08:00

317 lines
8.8 KiB
JavaScript

import * as BREPBuilder from '../brep-builder';
import {HalfEdge, Edge} from '../topo/edge';
import {Loop} from '../topo/loop';
import {Face} from '../topo/face';
import {Shell} from '../topo/shell';
import {Vertex} from '../topo/vertex';
import {Line} from '../geom/impl/line';
import Vector from '../../math/vector';
export function union( shell1, shell2 ) {
const facesData = [];
initSolveData(shell1, facesData);
initSolveData(shell2, facesData);
intersectFaces(shell1, shell2);
const result = new Shell();
for (let faceData of facesData) {
const seen = new Set();
const face = faceData.face;
if (shell2.faces.indexOf(face) != -1) {
continue;
}
const edges = faceData.newEdges.concat(face.outerLoop.halfEdges);
edges.forEach(e => __DEBUG__.AddLine(e.vertexA.point, e.vertexB.point));
while (true) {
let edge = edges.pop();
if (!edge) {
break;
}
if (seen.has(edge)) {
continue;
}
const loop = new Loop();
while (edge) {
loop.halfEdges.push(edge);
seen.add(edge);
let candidates = faceData.vertexToEdge.get(edge.vertexB);
if (!candidates) {
break;
}
edge = findMaxTurningLeft(edge, candidates);
if (seen.has(edge)) {
break;
}
}
BREPBuilder.linkSegments(loop.halfEdges);
const newFace = new Face(face.surface);
newFace.outerLoop = loop;
newFace.outerLoop.face = newFace;
result.faces.push(newFace);
}
}
return result;
}
function initSolveData(shell, facesData) {
for (let face of shell.faces) {
const solveData = new FaceSolveData(face);
facesData.push(solveData);
face.__faceSolveData = solveData;
for (let he of face.outerLoop.halfEdges) {
EdgeSolveData.clear(he);
solveData.vertexToEdge.set(he.vertexA, [he]);
}
}
}
function findMaxTurningLeft(edge, edges) {
edges = edges.slice();
function edgeVector(edge) {
return edge.vertexB.point.minus(edge.vertexA.point)._normalize();
}
const edgeV = edgeVector(edge);
function leftTurningMeasure(v1, v2) {
let measure = v1.dot(v2);
if (v1.cross(v1) < 0) {
measure *= -1;
measure += 2;
}
return measure
}
edges.sort((e1, e2) => {
return leftTurningMeasure(edgeV, edgeVector(e1)) - leftTurningMeasure(edgeV, edgeVector(e2));
});
return edges[0];
}
function intersectFaces(shell1, shell2) {
for (let i = 0; i < shell1.faces.length; i++) {
for (let j = 0; j < shell2.faces.length; j++) {
const face1 = shell1.faces[i];
const face2 = shell2.faces[j];
if (face1.debugName == 'base' && face2.debugName == 'wall_3') {
console.log('there');
}
const curve = face1.surface.intersect(face2.surface);
const newEdges = [];
const direction = face1.surface.normal.cross(face2.surface.normal);
split(face2, face1.outerLoop, newEdges, curve, direction);
split(face1, face2.outerLoop, newEdges, curve, direction);
newEdges.forEach(e => {
face1.__faceSolveData.newEdges.push(e.halfEdge1);
addToListInMap(face1.__faceSolveData.vertexToEdge, e.halfEdge1.vertexA, e.halfEdge1);
});
newEdges.forEach(e => {
face2.__faceSolveData.newEdges.push(e.halfEdge2);
addToListInMap(face2.__faceSolveData.vertexToEdge, e.halfEdge2.vertexA, e.halfEdge2);
});
}
}
}
function split(face, loop, result, onCurve, direction) {
const nodes = [];
for (let edge of loop.halfEdges) {
const edgeSolveData = EdgeSolveData.get(edge);
if (edgeSolveData.skipFace.has(face)) {
continue;
}
const preExistVertex = edgeSolveData.splitByFace.get(face);
if (preExistVertex) {
nodes.push(new Node(preExistVertex, edgeNormal(edge), edge));
continue
}
intersectSurfaceWithEdge(face.surface, edge, nodes);
}
for (let i = 0; i < nodes.length; i++) {
let inNode = nodes[i];
if (inNode == null) continue;
nodes[i] = null;
let closestIdx = findCloserProjection(nodes, inNode.point);
if (closestIdx == -1) {
continue;
}
let outNode = nodes[closestIdx];
if (outNode.normal.dot(inNode.normal) > 0) {
continue;
}
nodes[closestIdx] = null;
const halfEdge1 = new HalfEdge();
halfEdge1.vertexA = inNode.vertex;
halfEdge1.vertexB = outNode.vertex;
const halfEdge2 = new HalfEdge();
halfEdge2.vertexB = halfEdge1.vertexA;
halfEdge2.vertexA = halfEdge1.vertexB;
splitEdgeByVertex(inNode.edge, halfEdge1.vertexA);
splitEdgeByVertex(outNode.edge, halfEdge1.vertexB);
const sameDirection = direction.dot(outNode.point.minus(inNode.point)) > 0;
const halfEdgeSameDir = sameDirection ? halfEdge1 : halfEdge2;
const halfEdgeNegativeDir = sameDirection ? halfEdge2 : halfEdge1;
// cross edge should go with negative dir for the first face and positive for the second
const edge = new Edge(onCurve);
edge.halfEdge1 = halfEdgeNegativeDir;
edge.halfEdge2 = halfEdgeSameDir;
result.push(edge);
}
}
function splitEdgeByVertex(originHalfEdge, vertex) {
const orig = originHalfEdge;
const halfEdge1 = new HalfEdge();
halfEdge1.vertexA = vertex;
halfEdge1.vertexB = orig.vertexB;
const halfEdge2 = new HalfEdge();
halfEdge2.vertexA = halfEdge1.vertexB;
halfEdge2.vertexB = halfEdge1.vertexA;
const newEdge = new Edge(orig.edge);
BREPBuilder.linkHalfEdges(newEdge, halfEdge1, halfEdge2);
const twin = orig.twin();
orig.vertexB = vertex;
twin.vertexA = vertex;
orig.loop.halfEdges.push(halfEdge1);
twin.loop.halfEdges.push(halfEdge2);
halfEdge1.loop = orig.loop;
halfEdge2.loop = twin.loop;
EdgeSolveData.transfer(orig, halfEdge1);
EdgeSolveData.transfer(twin, halfEdge2);
EdgeSolveData.createIfEmpty(twin).splitByFace.set(orig.loop.face, vertex);
EdgeSolveData.createIfEmpty(halfEdge2).skipFace.add(orig.loop.face);
addToListInMap(orig.loop.face.__faceSolveData.vertexToEdge, vertex, halfEdge1);
addToListInMap(twin.loop.face.__faceSolveData.vertexToEdge, vertex, halfEdge2);
}
function findCloserProjection(nodes, point) {
let hero = -1;
let heroDistance = Number.MAX_VALUE;
for (let i = 0; i < nodes.length; i++) {
let node = nodes[i];
if (node == null) continue;
let projectionDistance = node.normal.dot(node.point.minus(point));
if (hero == -1 || (projectionDistance > 0 && projectionDistance < heroDistance)) {
hero = i;
heroDistance = projectionDistance;
}
}
return hero;
}
function intersectSurfaceWithEdge(surface, edge, result) {
const p0 = edge.vertexA.point;
const ab = edge.vertexB.point.minus(p0);
const length = ab.length();
const v = ab._multiply(1 / length);
const edgeLine = new Line(p0, v);
const t = edgeLine.intersectSurface(surface);
if (t >= 0 && t <= length) {
const pointOfIntersection = edgeLine.parametricEquation(t);
const edgeNormal = edge.loop.face.surface.normal.cross(v)._normalize() ;
result.push(new Node(new Vertex(pointOfIntersection), edgeNormal, edge));
}
}
function edgeNormal(edge) {
return edge.loop.face.surface.normal.cross( edge.vertexB.point.minus(edge.vertexA.point) )._normalize();
}
function intersectCurveWithEdge(curve, edge, surface, result) {
const p0 = edge.vertexA.point;
const ab = edge.vertexB.point.minus(p0);
const length = ab.length();
const v = ab._multiply(1 / length);
const edgeLine = new Line(p0, v);
const t = edgeLine.intersectCurve(curve, surface);
if (t >= 0 && t <= length) {
const pointOfIntersection = edgeLine.parametricEquation(t);
const edgeNormal = surface.normal.cross(v)._normalize() ;
result.push(new Node(pointOfIntersection, edgeNormal, edge));
}
}
function EdgeSolveData() {
this.splitByFace = new Map();
this.skipFace = new Set();
}
EdgeSolveData.EMPTY = new EdgeSolveData();
EdgeSolveData.get = function(edge) {
if (!edge.__edgeSolveData) {
return EdgeSolveData.EMPTY;
}
return edge.__edgeSolveData;
};
EdgeSolveData.createIfEmpty = function(edge) {
if (!edge.__edgeSolveData) {
edge.__edgeSolveData = new EdgeSolveData();
}
return edge.__edgeSolveData;
};
EdgeSolveData.clear = function(edge) {
delete edge.__edgeSolveData;
};
EdgeSolveData.transfer = function(from, to) {
to.__edgeSolveData = from.__edgeSolveData;
};
function Node(vertex, normal, splitsEdge) {
this.vertex = vertex;
this.normal = normal;
this.point = vertex.point;
this.edge = splitsEdge;
__DEBUG__.AddPoint(this.point);
}
class SolveData {
constructor() {
this.faceData = [];
}
}
class FaceSolveData {
constructor(face) {
this.face = face;
this.newEdges = [];
this.vertexToEdge = new Map();
}
}
function addToListInMap(map, key, value) {
let list = map.get(key);
if (!list) {
list = [];
map.set(key, list);
}
list.push(value);
}