mirror of
https://github.com/xibyte/jsketcher
synced 2025-12-06 08:25:19 +01:00
85 lines
2.1 KiB
TypeScript
85 lines
2.1 KiB
TypeScript
import Vector from "math/vector";
|
|
|
|
export class Line {
|
|
p0: Vector;
|
|
v: Vector;
|
|
|
|
private _pointsCache: Map<any, Vector>;
|
|
|
|
isLine: boolean;
|
|
|
|
static fromTwoPlanesIntersection: (plane1, plane2) => Line;
|
|
static fromSegment: (a, b) => Line;
|
|
|
|
constructor(p0, v) {
|
|
this.p0 = p0;
|
|
this.v = v;
|
|
}
|
|
|
|
intersectSurface(surface) {
|
|
if (surface.isPlane) {
|
|
const s0 = surface.normal.multiply(surface.w);
|
|
return surface.normal.dot(s0.minus(this.p0)) / surface.normal.dot(this.v); // 4.7.4
|
|
} else {
|
|
throw 'unsupported';
|
|
// return super.intersectSurface(surface);
|
|
}
|
|
}
|
|
|
|
intersectCurve(curve, surface) {
|
|
if (curve.isLine && surface.isPlane) {
|
|
const otherNormal = surface.normal.cross(curve.v)._normalize();
|
|
return otherNormal.dot(curve.p0.minus(this.p0)) / otherNormal.dot(this.v); // (4.8.3)
|
|
}
|
|
throw 'unsupported';
|
|
// return super.intersectCurve(curve, surface);
|
|
}
|
|
|
|
point(t) {
|
|
return this.p0.plus(this.v.multiply(t));
|
|
}
|
|
|
|
t(point) {
|
|
return point.minus(this.p0).dot(this.v);
|
|
}
|
|
|
|
pointOfSurfaceIntersection(surface) {
|
|
if (!this._pointsCache) {
|
|
this._pointsCache = new Map();
|
|
}
|
|
let point = this._pointsCache.get(surface);
|
|
if (!point) {
|
|
const t = this.intersectSurface(surface);
|
|
point = this.point(t);
|
|
this._pointsCache.set(surface, point);
|
|
}
|
|
return point;
|
|
}
|
|
|
|
translate(vector) {
|
|
return new Line(this.p0.plus(vector), this.v);
|
|
}
|
|
|
|
tessellate(resolution, from, to, path) {
|
|
}
|
|
|
|
offset() {}
|
|
}
|
|
|
|
Line.prototype.isLine = true;
|
|
|
|
Line.fromTwoPlanesIntersection = function(plane1, plane2): Line {
|
|
const n1 = plane1.normal;
|
|
const n2 = plane2.normal;
|
|
const v = n1.cross(n2)._normalize();
|
|
const pf1 = plane1.toParametricForm();
|
|
const pf2 = plane2.toParametricForm();
|
|
const r0diff = pf1.r0.minus(pf2.r0);
|
|
const ww = r0diff.minus(n2.multiply(r0diff.dot(n2)));
|
|
const p0 = pf2.r0.plus( ww.multiply( n1.dot(r0diff) / n1.dot(ww)));
|
|
return new Line(p0, v);
|
|
};
|
|
|
|
Line.fromSegment = function(a, b) {
|
|
return new Line(a, b.minus(a)._normalize());
|
|
};
|