jsketcher/web/app/cad/assembly/constraints3d.ts
2020-06-29 19:33:11 -07:00

615 lines
14 KiB
TypeScript

import {COS_FN, Polynomial, POW_1_FN, POW_2_FN, SIN_FN} from "../../sketcher/constr/polynomial";
import {NoIcon} from "../../sketcher/icons/NoIcon";
import {ConstraintSchema} from "../../sketcher/constr/ANConstraints";
import {MObject} from "../model/mobject";
import {AssemblyNode} from "./assembly";
import {IconType} from "react-icons";
import Vector from "math/vector";
export const Constraints3D = {
PlaneOppositeNormals: {
id: 'PlaneOppositeNormals',
name: 'Plane Opposite Normals',
icon: NoIcon,
defineParamsScope: ([plane1, plane2], cb) => {
cb(plane1.theta);
cb(plane1.phi);
cb(plane2.theta);
cb(plane2.phi);
},
collectPolynomials: (polynomials, params) => {
const [
theta1, phi1, theta2, phi2
] = params;
// nx1, ny1, nz1, nx2, ny2, nz2
// sin(theta) * cos(phi),
// sin(theta) * sin(phi),
// cos(theta),
// const p = new Polynomial(1)
// .monomial()
// .term(theta1, SIN_FN)
// .term(phi1, COS_FN)
// .term(theta2, SIN_FN)
// .term(phi2, COS_FN)
// .monomial()
// .term(theta1, SIN_FN)
// .term(phi1, SIN_FN)
//
// .term(theta2, SIN_FN)
// .term(phi2, SIN_FN)
// .monomial()
// .term(theta1, COS_FN)
// .term(theta2, COS_FN);
// 180 - theta1
polynomials.push(
new Polynomial(Math.PI)
.monomial(-1)
.term(theta1, POW_1_FN)
.monomial(-1)
.term(theta2, POW_1_FN)
);
polynomials.push(
new Polynomial(Math.PI)
.monomial(1)
.term(phi1, POW_1_FN)
.monomial(-1)
.term(phi2, POW_1_FN)
);
}
},
PlaneEqualDepth: {
id: 'PlaneEqualDepth',
name: 'Plane Equal Depth',
icon: NoIcon,
defineParamsScope: ([plane1, plane2], cb) => {
cb(plane1.w);
cb(plane2.w);
},
collectPolynomials: (polynomials, params) => {
const [
w1, w2
] = params;
polynomials.push(
new Polynomial(0)
.monomial(1)
.term(w1, POW_1_FN)
.monomial()
.term(w2, POW_1_FN)
);
}
},
UnitVectorConsistency: {
id: 'UnitVectorConsistency',
name: 'UnitVectorConsistency',
icon: NoIcon,
defineParamsScope: ([vec], cb) => {
//don't change to generic way it can a plane
cb(vec.x);
cb(vec.y);
cb(vec.z);
},
collectPolynomials: (polynomials, params) => {
const [x, y, z] = params;
polynomials.push(
new Polynomial(-1)
.monomial()
.term(x, POW_2_FN)
.monomial()
.term(y, POW_2_FN)
.monomial()
.term(z, POW_2_FN)
);
}
},
CSysConsistency: {
id: 'CSysConsistency',
name: 'CSysConsistency',
icon: NoIcon,
defineParamsScope: ([csys], cb) => {
cb(csys.ix);
cb(csys.iy);
cb(csys.iz);
cb(csys.jx);
cb(csys.jy);
cb(csys.jz);
cb(csys.kx);
cb(csys.ky);
cb(csys.kz);
},
collectPolynomials: (polynomials, params) => {
const [
ix,
iy,
iz,
jx,
jy,
jz,
kx,
ky,
kz] = params;
//let's keep matrix orthogonal and unit basis
polynomials.push(new Polynomial(0)
.monomial()
.term(ix, POW_1_FN)
.term(jx, POW_1_FN)
.monomial()
.term(iy, POW_1_FN)
.term(jy, POW_1_FN)
.monomial()
.term(iz, POW_1_FN)
.term(jz, POW_1_FN));
polynomials.push(new Polynomial(0)
.monomial()
.term(ix, POW_1_FN)
.term(kx, POW_1_FN)
.monomial()
.term(iy, POW_1_FN)
.term(ky, POW_1_FN)
.monomial()
.term(iz, POW_1_FN)
.term(kz, POW_1_FN));
polynomials.push(new Polynomial(0)
.monomial()
.term(jx, POW_1_FN)
.term(kx, POW_1_FN)
.monomial()
.term(jy, POW_1_FN)
.term(ky, POW_1_FN)
.monomial()
.term(jz, POW_1_FN)
.term(kz, POW_1_FN));
polynomials.push(new Polynomial(-1)
.monomial()
.term(ix, POW_2_FN)
.monomial()
.term(iy, POW_2_FN)
.monomial()
.term(iz, POW_2_FN));
polynomials.push(new Polynomial(-1)
.monomial()
.term(jx, POW_2_FN)
.monomial()
.term(jy, POW_2_FN)
.monomial()
.term(jz, POW_2_FN));
polynomials.push(new Polynomial(-1)
.monomial()
.term(kx, POW_2_FN)
.monomial()
.term(ky, POW_2_FN)
.monomial()
.term(kz, POW_2_FN));
},
},
PlaneNormalLink: {
id: 'PlaneNormalLink',
name: 'Plane Normal Link',
icon: NoIcon,
defineParamsScope: ([location, plane], cb) => {
cb(location.alpha);
cb(location.beta);
cb(location.gamma);
cb(plane.theta);
cb(plane.phi);
},
collectPolynomials: (polynomials, params, _, objects) => {
const [csys, plane] = objects;
const {x: nStarX, y: nStarY, z: nStarZ} = plane.getNormal();
const [alpha, beta, gamma, theta, phi] = params;
// return new Vector(
// Math.sin(theta) * Math.cos(phi),
// Math.sin(theta) * Math.sin(phi),
// Math.cos(theta),
// )
// out.x = this.mxx * x + this.mxy * y + this.mxz * z + this.tx;
// out.y = this.myx * x + this.myy * y + this.myz * z + this.ty;
// out.z = this.mzx * x + this.mzy * y + this.mzz * z + this.tz;
// cos(alpha)*cos(beta), cos(alpha)*sin(beta)*sin(gamma) - sin(alpha)*cos(gamma), cos(alpha)*sin(beta)*cos(gamma) + sin(alpha)*sin(gamma),
// sin(alpha)*cos(beta), sin(alpha)*sin(beta)*sin(gamma) + cos(alpha)*cos(gamma), sin(alpha)*sin(beta)*cos(gamma) - cos(alpha)*sin(gamma),
// -sin(beta), cos(beta)*sin(gamma), cos(beta)*cos(gamma)
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(theta, SIN_FN)
.term(phi, COS_FN)
.monomial(nStarX)
.term(alpha, COS_FN)
.term(beta, COS_FN)
.monomial(nStarY)
.term(alpha, COS_FN)
.term(beta, SIN_FN)
.term(gamma, SIN_FN)
.monomial(-nStarY)
.term(alpha, SIN_FN)
.term(gamma, COS_FN)
.monomial(nStarZ)
.term(alpha, COS_FN)
.term(beta, SIN_FN)
.term(gamma, COS_FN)
.monomial(nStarZ)
.term(alpha, SIN_FN)
.term(gamma, SIN_FN)
);
// sin(alpha)*cos(beta), sin(alpha)*sin(beta)*sin(gamma) + cos(alpha)*cos(gamma), sin(alpha)*sin(beta)*cos(gamma) - cos(alpha)*sin(gamma),
// Math.sin(theta) * Math.sin(phi),
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(theta, SIN_FN)
.term(phi, SIN_FN)
.monomial(nStarX)
.term(alpha, SIN_FN)
.term(beta, COS_FN)
.monomial(nStarY)
.term(alpha, SIN_FN)
.term(beta, SIN_FN)
.term(gamma, SIN_FN)
.monomial(nStarY)
.term(alpha, COS_FN)
.term(gamma, COS_FN)
.monomial(nStarZ)
.term(alpha, SIN_FN)
.term(beta, SIN_FN)
.term(gamma, COS_FN)
.monomial(-nStarZ)
.term(alpha, COS_FN)
.term(gamma, SIN_FN)
);
// -sin(beta), cos(beta)*sin(gamma), cos(beta)*cos(gamma)
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(theta, COS_FN)
.monomial(-nStarX)
.term(beta, SIN_FN)
.monomial(nStarY)
.term(beta, COS_FN)
.term(gamma, SIN_FN)
.monomial(nStarZ)
.term(beta, COS_FN)
.term(gamma, COS_FN)
);
}
},
PlaneDepthLink: {
id: 'PlaneDepthLink',
name: 'PlaneDepthLink',
icon: NoIcon,
defineParamsScope: ([location, plane], cb) => {
cb(location.dx);
cb(location.dy);
cb(location.dz);
cb(plane.w);
},
collectPolynomials: (polynomials, params, _, objects) => {
const [location, plane] = objects;
const [ox, oy, oz, w] = params;
const {x: xP, y: yP, z: zP} = plane.toNormalVector();
// __DEBUG__.AddNormal()
const {x: nStarX, y: nStarY, z: nStarZ} = plane.getNormal();
const nStarW = plane.getDepth();
const pStar = plane.getNormal().multiply(nStarW);
const p0 = location.rotationMatrix().apply(pStar);
const w0 = p0.length();
// out.x = this.mxx * x + this.mxy * y + this.mxz * z + this.tx;
// out.y = this.myx * x + this.myy * y + this.myz * z + this.ty;
// out.z = this.mzx * x + this.mzy * y + this.mzz * z + this.tz;
polynomials.push(
new Polynomial(-xP * w0)
.monomial(xP)
.term(w, POW_1_FN)
.monomial(-1)
.term(ox, POW_1_FN)
);
polynomials.push(
new Polynomial(-yP * w0)
.monomial(yP)
.term(w, POW_1_FN)
.monomial(-1)
.term(oy, POW_1_FN)
);
polynomials.push(
new Polynomial(-zP * w0)
.monomial(zP)
.term(w, POW_1_FN)
.monomial(-1)
.term(oz, POW_1_FN)
);
}
},
RigidBodyLink3x3: {
id: 'RigidBodyLink3x3',
name: 'RigidBodyLink3x3',
icon: NoIcon,
defineParamsScope: ([csys, vec], cb) => {
cb(csys.ix);
cb(csys.iy);
cb(csys.iz);
cb(csys.jx);
cb(csys.jy);
cb(csys.jz);
cb(csys.kx);
cb(csys.ky);
cb(csys.kz);
cb(vec.x);
cb(vec.y);
cb(vec.z);
},
collectPolynomials: (polynomials, params, _, objects) => {
const [csys, vec] = objects;
const {x: nStarX, y: nStarY, z: nStarZ} = vec.getVector();
const [ix, iy, iz, jx, jy, jz, kx, ky, kz, x, y, z] = params;
// out.x = this.mxx * x + this.mxy * y + this.mxz * z + this.tx;
// out.y = this.myx * x + this.myy * y + this.myz * z + this.ty;
// out.z = this.mzx * x + this.mzy * y + this.mzz * z + this.tz;
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(x, POW_1_FN)
.monomial(nStarX)
.term(ix, POW_1_FN)
.monomial(nStarY)
.term(jx, POW_1_FN)
.monomial(nStarZ)
.term(kx, POW_1_FN)
);
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(y, POW_1_FN)
.monomial(nStarX)
.term(iy, POW_1_FN)
.monomial(nStarY)
.term(jy, POW_1_FN)
.monomial(nStarZ)
.term(ky, POW_1_FN),
);
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(z, POW_1_FN)
.monomial(nStarX)
.term(iz, POW_1_FN)
.monomial(nStarY)
.term(jz, POW_1_FN)
.monomial(nStarZ)
.term(kz, POW_1_FN)
);
}
},
RigidBodyLink4x4: {
id: 'RigidBodyLink4x4',
name: 'RigidBodyLink4x4',
icon: NoIcon,
defineParamsScope: ([csys, vec], cb) => {
cb(csys.ox);
cb(csys.oy);
cb(csys.oz);
cb(csys.ix);
cb(csys.iy);
cb(csys.iz);
cb(csys.jx);
cb(csys.jy);
cb(csys.jz);
cb(csys.kx);
cb(csys.ky);
cb(csys.kz);
vec.visitParams(cb);
},
collectPolynomials: (polynomials, params, _, objects) => {
const [csys, vec] = objects;
const {x: xStar, y: yStar, z: zStar} = vec.getVector();
const [ox, oy, oz, ix, iy, iz, jx, jy, jz, kx, ky, kz, x, y, z] = params;
// out.x = this.mxx * x + this.mxy * y + this.mxz * z + this.tx;
// out.y = this.myx * x + this.myy * y + this.myz * z + this.ty;
// out.z = this.mzx * x + this.mzy * y + this.mzz * z + this.tz;
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(x, POW_1_FN)
.monomial(xStar)
.term(ix, POW_1_FN)
.monomial(yStar)
.term(jx, POW_1_FN)
.monomial(zStar)
.term(kx, POW_1_FN)
.monomial()
.term(ox, POW_1_FN)
);
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(y, POW_1_FN)
.monomial(xStar)
.term(iy, POW_1_FN)
.monomial(yStar)
.term(jy, POW_1_FN)
.monomial(zStar)
.term(ky, POW_1_FN)
.monomial()
.term(oy, POW_1_FN)
);
polynomials.push(
new Polynomial(0)
.monomial(-1)
.term(z, POW_1_FN)
.monomial(xStar)
.term(iz, POW_1_FN)
.monomial(yStar)
.term(jz, POW_1_FN)
.monomial(zStar)
.term(kz, POW_1_FN)
.monomial()
.term(oz, POW_1_FN)
);
}
},
};
export const AssemblyConstraints: {
[key: string]: AssemblyConstraintSchema
} = {
FaceToFace: {
id: 'FaceToFace',
name: 'Face To Face',
icon: NoIcon,
selectionMatcher: {
selector: 'matchAll',
types: ['face'],
minQuantity: 2
},
defineAssemblyScope: ([face1, face2]) => {
return [
face1.assemblyNodes.plane,
face2.assemblyNodes.plane,
];
},
orientation: ([plane1, plane2]) => {
return new OrientationConstraint(plane1.);
},
translation: Constraints3D.PlaneEqualDepth,
}
};
export class OrientationConstraint {
vecA: Vector;
vecB: Vector;
constructor(vecA: Vector, vecB: Vector) {
this.vecA = vecA;
this.vecB = vecB;
}
}
export interface AssemblyConstraintSchema {
id: string,
name: string,
icon?: IconType,
selectionMatcher?: {
selector: string,
types: any[],
minQuantity: number
};
defineAssemblyScope: (objects: MObject[]) => AssemblyNode[];
orientation: (objects: AssemblyNode[]) => OrientationConstraint,
translation: ConstraintSchema,
}