mirror of
https://github.com/xibyte/jsketcher
synced 2025-12-06 08:25:19 +01:00
117 lines
No EOL
3.2 KiB
JavaScript
117 lines
No EOL
3.2 KiB
JavaScript
import {areEqual, circleFromPoints, distanceAB, radiusOfCurvature, TOLERANCE} from '../../../../modules/math/commons';
|
|
import * as vec from 'math/vec';
|
|
import {iteratePath} from '../cad-utils';
|
|
import NurbsCurve from '../../brep/geom/curves/nurbsCurve';
|
|
import {veqXYZ} from '../../brep/geom/tolerance';
|
|
import curveTess, {curveTessParams} from '../../brep/geom/impl/curve/curve-tess';
|
|
|
|
export function getSketchBoundaries(sceneFace) {
|
|
const boundary = {lines: [], arcs: [], circles: [], nurbses: []};
|
|
let w2sTr = sceneFace.worldToSketchTransformation;
|
|
let _w2sTrArr = null;
|
|
let w2sTrArr = () => _w2sTrArr || (_w2sTrArr = w2sTr.toArray());
|
|
if (!sceneFace.brepFace) {
|
|
return boundary;
|
|
}
|
|
for (let he of sceneFace.brepFace.edges) {
|
|
const edge = sceneFace.shell.brepRegistry.get(he.edge);
|
|
if (!edge) {
|
|
continue;
|
|
}
|
|
const id = edge.id;
|
|
const curve = he.edge.curve.impl;
|
|
if (curve.constructor.name === 'NurbsCurve' && curve.degree() !== 1) {
|
|
let curve2d = curve.transform(w2sTrArr());
|
|
let arcRadius = findArcRadius(curve2d);
|
|
if (arcRadius !== null){
|
|
let [from, to] = curve2d.domain();
|
|
let [A, DA, DDA] = curve2d.eval(from, 2);
|
|
let [B, DB] = curve2d.eval(to, 1);
|
|
|
|
let mA = vec.normalize(DA);
|
|
let mmA = vec.normalize(DDA);
|
|
|
|
let orient = mA[0] * mmA[1] - mA[1] * mmA[0];
|
|
|
|
if (orient < 0) {
|
|
let t;
|
|
|
|
t = B;
|
|
B = A;
|
|
A = t;
|
|
|
|
t = DB;
|
|
DB = DA;
|
|
DA = t;
|
|
|
|
mA = vec.normalize(DA);
|
|
}
|
|
|
|
if (veqXYZ(A[0], A[1], 0, B[0], B[1], 0)) {
|
|
let centripetal = perpXY(vec.mul(mA, arcRadius));
|
|
let c = vec._add(centripetal, A);
|
|
boundary.circles.push({
|
|
id,
|
|
c: {x: c[0], y: c[1]},
|
|
r: arcRadius
|
|
});
|
|
continue;
|
|
}
|
|
|
|
let centripetalB = vec.normalize(DB);
|
|
perpXY(centripetalB);
|
|
|
|
let proj = vec.dot(mA, vec.sub(A, B));
|
|
let u = proj / vec.dot(mA, centripetalB);
|
|
|
|
let C = vec._add(vec._mul(centripetalB, u), B);
|
|
boundary.arcs.push({
|
|
id,
|
|
a: {x: A[0], y: A[1]},
|
|
b: {x: B[0], y: B[1]},
|
|
c: {x: C[0], y: C[1]}
|
|
});
|
|
} else {
|
|
const data = curve.transform(w2sTrArr()).serialize();
|
|
data.id = id;
|
|
boundary.nurbses.push(data);
|
|
}
|
|
} else {
|
|
const addSegment = (id, a, b) => {
|
|
boundary.lines.push({
|
|
id,
|
|
a: {x: a.x, y: a.y},
|
|
b: {x: b.x, y: b.y}
|
|
});
|
|
};
|
|
addSegment(id, w2sTr.apply(he.vertexA.point), w2sTr.apply(he.vertexB.point));
|
|
}
|
|
}
|
|
return boundary;
|
|
}
|
|
|
|
function findArcRadius(curve) {
|
|
if (curve.degree() !== 2) {
|
|
return null;
|
|
}
|
|
let [uMin, uMax] = curve.domain();
|
|
let knots = curveTessParams(curve, uMin, uMax);
|
|
let prevRadCur = null;
|
|
for (let knot of knots) {
|
|
let [P, D, DD] = curve.eval(knot, 2);
|
|
let radCur = radiusOfCurvature(D, DD);
|
|
if (prevRadCur !== null && !areEqual(radCur, prevRadCur, 0.1)) {
|
|
return null;
|
|
}
|
|
prevRadCur = radCur;
|
|
}
|
|
return prevRadCur;
|
|
}
|
|
|
|
function perpXY(v) {
|
|
let [x, y] = v;
|
|
|
|
v[0] = - y;
|
|
v[1] = x;
|
|
return v;
|
|
} |