jsketcher/web/app/sketcher/constr/ANConstraints.ts
Val Erastov (xibyte) 7fe68287eb fixing tests
2020-07-18 21:19:46 -07:00

1144 lines
No EOL
30 KiB
TypeScript

import {Param} from '../shapes/param';
import {DEG_RAD, distanceAB, makeAngle0_360} from "../../math/math";
import {COS_FN, Polynomial, POW_1_FN, POW_2_FN, POW_3_FN, SIN_FN} from "./polynomial";
import {cubicBezierDer1, cubicBezierDer2, cubicBezierPoint} from "../../brep/geom/curves/bezierCubic";
import {greaterThanConstraint, lessThanConstraint} from "./barriers";
import {genericCurveStep} from "../../brep/geom/impl/nurbs-ext";
import {_normalize} from "math/vec";
import {
AngleBetweenConstraintIcon,
AngleConstraintIcon,
CoincidentConstraintIcon,
DistanceConstraintIcon,
DistancePLConstraintIcon,
EqualConstraintIcon,
FilletConstraintIcon,
GenericConstraintIcon,
HorizontalConstraintIcon,
LockConstraintIcon,
ParallelConstraintIcon,
PerpendicularConstraintIcon,
PointInMiddleConstraintIcon,
PointOnCurveConstraintIcon,
PointOnLineConstraintIcon,
RadiusConstraintIcon,
SymmetryConstraintIcon,
TangentConstraintIcon,
VerticalConstraintIcon
} from "../icons/constraints/ConstraintIcons";
import {
AngleAbsoluteAnnotation,
AngleBetweenAnnotation,
LengthAnnotation,
RadiusLengthAnnotation
} from "../shapes/annotations/angleAnnotation";
import {ISolveStage, SolvableObject} from "./solvableObject";
import {SketchObject} from "../shapes/sketch-object";
import {IconType} from "react-icons";
import {ConstraintAnnotation} from "./constraintAnnotation";
export const ConstraintDefinitions
// : {
// [key: string]: ConstraintSchema
// }
= {
PCoincident : {
id: 'PCoincident',
name: 'Two Points Coincidence',
icon: CoincidentConstraintIcon,
defineParamsScope: ([p1, p2], callback) => {
p1.visitParams(callback);
p2.visitParams(callback);
},
collectPolynomials: (polynomials, [x1, y1, x2, y2]) => {
polynomials.push(new Polynomial(0)
.monomial(1)
.term(x1, POW_1_FN)
.monomial(-1)
.term(x2, POW_1_FN)
);
polynomials.push(new Polynomial(0)
.monomial(1)
.term(y1, POW_1_FN)
.monomial(-1)
.term(y2, POW_1_FN)
);
},
},
TangentLC: {
id: 'TangentLC',
name: 'Line & Circle Tangency',
icon: TangentConstraintIcon,
constants: {
inverted: {
type: 'boolean',
description: 'whether the circle attached from the opposite side',
initialValue: ([line, circle]) => {
return line.nx * circle.c.x + line.ny * circle.c.y < line.w;
}
}
},
defineParamsScope: ([segment, circle], callback) => {
callback(segment.params.ang);
segment.a.visitParams(callback);
circle.c.visitParams(callback);
callback(circle.r);
},
collectPolynomials: (polynomials, [ang, ax, ay, cx, cy, r], {inverted}) => {
polynomials.push(tangentLCPolynomial(ang, ax, ay, cx, cy, r, inverted));
},
},
PointOnLine: {
id: 'PointOnLine',
name: 'Point On Line',
icon: PointOnLineConstraintIcon,
defineParamsScope: ([pt, segment], callback) => {
pt.visitParams(callback);
segment.a.visitParams(callback);
callback(segment.params.ang);
},
collectPolynomials: (polynomials, [x, y, ax, ay, ang]) => {
polynomials.push(new Polynomial(0)
.monomial(-1)
.term(x, POW_1_FN)
.term(ang, SIN_FN)
.monomial(1)
.term(y, POW_1_FN)
.term(ang, COS_FN)
.monomial(1)
.term(ax, POW_1_FN)
.term(ang, SIN_FN)
.monomial(-1)
.term(ay, POW_1_FN)
.term(ang, COS_FN)
);
},
},
PointOnCircle: {
id: 'PointOnCircle',
name: 'Point On Circle',
icon: PointOnCurveConstraintIcon,
defineParamsScope: ([pt, circle], callback) => {
pt.visitParams(callback);
circle.c.visitParams(callback);
callback(circle.r);
},
collectPolynomials: (polynomials, [x1, y1, x2, y2, r]) => {
polynomials.push(new Polynomial()
.monomial(-1)
.term(r, POW_2_FN)
.monomial(1)
.term(x1, POW_2_FN)
.monomial(1)
.term(x2, POW_2_FN)
.monomial(-2)
.term(x1, POW_1_FN)
.term(x2, POW_1_FN)
.monomial(1)
.term(y1, POW_2_FN)
.monomial(1)
.term(y2, POW_2_FN)
.monomial(-2)
.term(y1, POW_1_FN)
.term(y2, POW_1_FN)
);
},
},
PointOnBezier: {
id: 'PointOnBezier',
name: 'Point On Bezier Curve',
icon: PointOnCurveConstraintIcon,
initialGuess: ([p0x,p0y, p3x,p3y, p1x,p1y, p2x,p2y, t, px, py]) => {
const _t = t.get();
if (_t < 0.001) {
t.set(0);
}
if (_t > 0.999) {
t.set(1);
}
},
defineParamsScope: ([pt, curve], callback) => {
const t = new Param(0.5, 't');
t.constraints = [greaterThanConstraint(0), lessThanConstraint(1)];
curve.visitParams(callback);
callback(t);
pt.visitParams(callback);
},
collectPolynomials: (polynomials, [p0x,p0y, p3x,p3y, p1x,p1y, p2x,p2y, t, px, py]) => {
polynomials.push(bezier3Polynomial(px, t, p0x, p1x, p2x, p3x));
polynomials.push(bezier3Polynomial(py, t, p0y, p1y, p2y, p3y));
},
},
TangentLineBezier: {
id: 'TangentLineBezier',
name: 'Line & Bezier Tangency',
icon: TangentConstraintIcon,
initialGuess([p0x,p0y, p3x,p3y, p1x,p1y, p2x,p2y, _t, px,py, nx,ny, _ang, ax,ay]) {
const ang = _ang.get();
const p0 = [p0x.get(), p0y.get(), 0];
const p1 = [p1x.get(),p1y.get(), 0];
const p2 = [p2x.get(),p2y.get(), 0];
const p3 = [p3x.get(),p3y.get(), 0];
let t = 0;
let bestT = 0.5;
let best = -1;
while (t <= 1) {
const d1 = cubicBezierDer1(p0, p1, p2, p3, t);
const d2 = cubicBezierDer2(p0, p1, p2, p3, t);
t = Math.min(1, t + (genericCurveStep(d1, d2)||0.1));
_normalize(d2);
const measure = Math.abs(d1[0] * Math.cos(ang) + d1[1] * Math.sin(ang));
if (measure > best) {
best = measure;
bestT = t;
}
if (t === 1) {
break;
}
}
//otherwise it gets stuck in the straight areas
if (Math.abs(bestT - _t.get()) < 0.2) {
return;
}
_t.set(bestT);
const [_px, _py] = cubicBezierPoint(p0, p1, p2, p3, bestT);
const [_nx, _ny] = cubicBezierDer1(p0, p1, p2, p3, bestT);
px.set(_px);
py.set(_py);
nx.set(_nx);
ny.set(_ny);
},
defineParamsScope: ([segment, curve], callback) => {
const t0 = new Param(0.5, 't');
t0.constraints = [greaterThanConstraint(0), lessThanConstraint(1)];
curve.visitParams(callback);
callback(t0);
callback(new Param(0, 'X'));
callback(new Param(0, 'Y'));
callback(new Param(0, 'X'));
callback(new Param(0, 'Y'));
callback(segment.params.ang);
segment.a.visitParams(callback);
},
collectPolynomials: (polynomials, [p0x,p0y, p3x,p3y, p1x,p1y, p2x,p2y, t, px,py, nx,ny, ang, ax,ay]) => {
polynomials.push(bezier3Polynomial(px, t, p0x, p1x, p2x, p3x));
polynomials.push(bezier3Polynomial(py, t, p0y, p1y, p2y, p3y));
//expanded second derivative: -6 P0 t + 6 P0 + 18 P1 t - 12 P1 - 18 P2 t + 6 P2 + 6 P3 t
const bzCubeD2 = (p, t, p0, p1, p2, p3) => new Polynomial()
.monomial(-6)
.term(p0, POW_1_FN)
.term(t, POW_1_FN)
.monomial(6)
.term(p0, POW_1_FN)
.monomial(18)
.term(p1, POW_1_FN)
.term(t, POW_1_FN)
.monomial(-12)
.term(p1, POW_1_FN)
.monomial(-18)
.term(p2, POW_1_FN)
.term(t, POW_1_FN)
.monomial(6)
.term(p2, POW_1_FN)
.monomial(6)
.term(p3, POW_1_FN)
.term(t, POW_1_FN)
.monomial(-1)
.term(p, POW_1_FN);
//expanded first derivative: -3 P0 t^2 + 6 P0 t - 3 P0 + 9 P1 t^2 - 12 P1 t + 3 P1 - 9 P2 t^2 + 6 P2 t + 3 P3 t^2
const bzCubeD1 = (p, t, p0, p1, p2, p3) => new Polynomial()
.monomial(-3)
.term(p0, POW_1_FN)
.term(t, POW_2_FN)
.monomial(6)
.term(p0, POW_1_FN)
.term(t, POW_1_FN)
.monomial(-3)
.term(p0, POW_1_FN)
.monomial(9)
.term(p1, POW_1_FN)
.term(t, POW_2_FN)
.monomial(-12)
.term(p1, POW_1_FN)
.term(t, POW_1_FN)
.monomial(3)
.term(p1, POW_1_FN)
.monomial(-9)
.term(p2, POW_1_FN)
.term(t, POW_2_FN)
.monomial(6)
.term(p2, POW_1_FN)
.term(t, POW_1_FN)
.monomial(3)
.term(p3, POW_1_FN)
.term(t, POW_2_FN)
.monomial(-1)
.term(p, POW_1_FN);
polynomials.push(bzCubeD1(nx, t, p0x, p1x, p2x, p3x));
polynomials.push(bzCubeD1(ny, t, p0y, p1y, p2y, p3y));
polynomials.push(new Polynomial()
.monomial(-1)
.term(ny, POW_1_FN)
.term(ang, COS_FN)
.monomial()
.term(nx, POW_1_FN)
.term(ang, SIN_FN)
);
ConstraintDefinitions.PointOnLine.collectPolynomials(polynomials, [px, py, ax, ay, ang]);
},
},
PointOnEllipse: {
id: 'PointOnEllipse',
name: 'Point On Ellipse',
icon: PointOnCurveConstraintIcon,
defineParamsScope: ([pt, ellipse], callback) => {
pt.visitParams(callback);
ellipse.visitParams(callback);
callback(new Param(Math.atan2(pt.y - ellipse.c.y, pt.x - ellipse.c.x), 't'));
},
collectPolynomials: (polynomials, [px,py, cx,cy, rx,ry, rot, t]) => {
polynomials.push(new Polynomial()
.monomial(-1)
.term(px, POW_1_FN)
.monomial()
.term(cx, POW_1_FN)
.monomial()
.term(rx, POW_1_FN)
.term(rot, COS_FN)
.term(t, COS_FN)
.monomial(-1)
.term(ry, POW_1_FN)
.term(rot, SIN_FN)
.term(t, SIN_FN)
);
polynomials.push(new Polynomial()
.monomial(-1)
.term(py, POW_1_FN)
.monomial()
.term(cy, POW_1_FN)
.monomial()
.term(rx, POW_1_FN)
.term(rot, SIN_FN)
.term(t, COS_FN)
.monomial()
.term(ry, POW_1_FN)
.term(rot, COS_FN)
.term(t, SIN_FN)
);
// polynomials.push(ellipsePoly());
},
},
PointInMiddle: {
id: 'PointInMiddle',
name: 'Middle Point',
icon: PointInMiddleConstraintIcon,
defineParamsScope: ([pt, segment], callback) => {
segment.a.visitParams(callback);
pt.visitParams(callback);
segment.b.visitParams(callback);
},
collectPolynomials: (polynomials, [x1, y1, x2, y2, x3, y3]) => {
polynomials.push(new Polynomial()
.monomial(1)
.term(x1, POW_2_FN)
.monomial(-2)
.term(x1, POW_1_FN)
.term(x2, POW_1_FN)
.monomial(1)
.term(y1, POW_2_FN)
.monomial(-2)
.term(y1, POW_1_FN)
.term(y2, POW_1_FN)
.monomial(-1)
.term(x3, POW_2_FN)
.monomial(2)
.term(x3, POW_1_FN)
.term(x2, POW_1_FN)
.monomial(-1)
.term(y3, POW_2_FN)
.monomial(2)
.term(y3, POW_1_FN)
.term(y2, POW_1_FN)
);
},
},
Symmetry: {
id: 'Symmetry',
name: 'Symmetry',
icon: SymmetryConstraintIcon,
defineParamsScope: ([pt, segment], callback) => {
segment.a.visitParams(callback);
pt.visitParams(callback);
segment.b.visitParams(callback);
callback(segment.params.ang);
},
collectPolynomials: (polynomials, [x1, y1, x2, y2, x3, y3, ang]) => {
ConstraintDefinitions.PointInMiddle.collectPolynomials(polynomials, [x1, y1, x2, y2, x3, y3]);
ConstraintDefinitions.PointOnLine.collectPolynomials(polynomials, [x2, y2, x1, y1, ang]);
},
},
DistancePP: {
id: 'DistancePP',
name: 'Distance Between Two Point',
icon: DistanceConstraintIcon,
constants: {
distance: {
type: 'number',
description: 'the distance between two points',
initialValue: ([a, b]) => {
return distanceAB(a, b);
},
}
},
defineParamsScope: ([pt1, pt2], callback) => {
pt1.visitParams(callback);
pt2.visitParams(callback);
},
collectPolynomials: (polynomials, [x1, y1, x2, y2], {distance}) => {
polynomials.push(new Polynomial( - distance * distance)
.monomial(1)
.term(x1, POW_2_FN)
.monomial(1)
.term(x2, POW_2_FN)
.monomial(-2)
.term(x1, POW_1_FN)
.term(x2, POW_1_FN)
.monomial(1)
.term(y1, POW_2_FN)
.monomial(1)
.term(y2, POW_2_FN)
.monomial(-2)
.term(y1, POW_1_FN)
.term(y2, POW_1_FN)
);
},
},
DistancePL: {
id: 'DistancePL',
name: 'Distance Between Point And Line',
icon: DistancePLConstraintIcon,
constants: {
distance: {
type: 'number',
description: 'the distance between two points',
initialValue: ([p, l]) => {
return Math.abs(l.nx * p.x + l.ny* p.y - l.nx * l.a.x - l.ny * l.a.y);
},
},
inverted: {
type: 'boolean',
description: 'whether constraint is being calculated on opposite side of the line',
initialValue: ([p, l]) => {
return l.nx * p.x + l.ny* p.y - l.nx * l.a.x - l.ny * l.a.y < 0;
},
}
},
defineParamsScope: ([p, l], callback) => {
p.visitParams(callback);
callback(l.params.ang);
l.a.visitParams(callback);
},
collectPolynomials: (polynomials, [x, y, ang, ax, ay], {distance, inverted}) => {
polynomials.push(new Polynomial( - (inverted ? -1:1) * distance )
.monomial(-1)
.term(x, POW_1_FN)
.term(ang, SIN_FN)
.monomial(1)
.term(y, POW_1_FN)
.term(ang, COS_FN)
.monomial(1)
.term(ax, POW_1_FN)
.term(ang, SIN_FN)
.monomial(-1)
.term(ay, POW_1_FN)
.term(ang, COS_FN));
},
},
Angle: {
id: 'Angle',
name: 'Absolute Line Angle',
icon: AngleConstraintIcon,
constants: {
angle: {
type: 'number',
description: 'line angle',
initialValue: ([seg]) => seg.getAngleFromNormal(),
transform: degree => ( (degree) % 360 ) * DEG_RAD
}
},
defineParamsScope: ([segment], callback) => {
callback(segment.params.ang);
},
collectPolynomials: (polynomials, [x], {angle}) => {
polynomials.push(new Polynomial( - angle).monomial(1).term(x, POW_1_FN));
},
setConstantsFromGeometry: ([seg], constants) => {
constants.angle = seg.getAngleFromNormal();
},
createAnnotations: ([segment], constraintInstance) => {
return [new AngleAbsoluteAnnotation(segment, constraintInstance)];
}
},
Vertical: {
id: 'Vertical',
name: 'Line Verticality',
icon: VerticalConstraintIcon,
constants: {
angle: {
readOnly: true,
type: 'number',
description: 'line angle',
initialValue: ([seg]) => {
const angleFromNormal = seg.angleDeg();
return Math.abs(270 - angleFromNormal) > Math.abs(90 - angleFromNormal) ? 90 : 270;
},
transform: degree => degree * DEG_RAD
}
},
defineParamsScope: (objs, cb) => {
ConstraintDefinitions.Angle.defineParamsScope(objs, cb);
},
collectPolynomials: (polynomials, params, constants) => {
ConstraintDefinitions.Angle.collectPolynomials(polynomials, params, constants);
}
},
Horizontal: {
id: 'Horizontal',
name: 'Line Horizontality',
icon: HorizontalConstraintIcon,
constants: {
angle: {
readOnly: true,
type: 'number',
description: 'line angle',
initialValue: ([seg]) => {
const ang = seg.angleDeg();
return Math.abs(180 - ang) > Math.min(Math.abs(360 - ang), Math.abs(0 - ang)) ? 0 : 180;
},
transform: degree => degree * DEG_RAD
}
},
defineParamsScope: (objs, cb) => {
ConstraintDefinitions.Angle.defineParamsScope(objs, cb);
},
collectPolynomials: (polynomials, params, constants) => {
ConstraintDefinitions.Angle.collectPolynomials(polynomials, params, constants);
}
},
AngleBetween: {
id: 'AngleBetween',
name: 'Angle Between Two Lines',
icon: AngleBetweenConstraintIcon,
constants: {
angle: {
type: 'number',
description: 'line angle',
initialValue: ([segment1, segment2]) => {
const a1 = segment1.params.ang.get();
const a2 = segment2.params.ang.get();
return makeAngle0_360(a2 - a1) / DEG_RAD;
},
transform: degree => degree * DEG_RAD
}
},
defineParamsScope: ([segment1, segment2], callback) => {
callback(segment1.params.ang);
callback(segment2.params.ang);
},
collectPolynomials: (polynomials, [x1, x2], {angle}) => {
polynomials.push(new Polynomial( - angle).monomial(1).term(x2, POW_1_FN).monomial(-1).term(x1, POW_1_FN));
},
createAnnotations: ([segment1, segment2], constraintInstance) => {
return [new AngleBetweenAnnotation(segment1, segment2, constraintInstance)];
}
},
Perpendicular: {
id: 'Perpendicular',
name: 'Perpendicular',
icon: PerpendicularConstraintIcon,
constants: {
angle: {
type: 'number',
description: 'line angle',
readOnly: true,
initialValue: ([segment1, segment2]) => {
const a1 = segment1.params.ang.get();
const a2 = segment2.params.ang.get();
const deg = makeAngle0_360(a2 - a1);
return Math.abs(270 - deg) > Math.abs(90 - deg) ? 90 : 270;
},
transform: degree => degree * DEG_RAD
}
},
defineParamsScope: (objs, cb) => {
ConstraintDefinitions.AngleBetween.defineParamsScope(objs, cb);
},
collectPolynomials: (polynomials, params, constants) => {
ConstraintDefinitions.AngleBetween.collectPolynomials(polynomials, params, constants);
}
},
Parallel: {
id: 'Parallel',
name: 'Parallel',
icon: ParallelConstraintIcon,
constants: {
angle: {
type: 'number',
description: 'line angle',
initialValue: ([segment1, segment2]) => {
const a1 = segment1.params.ang.get();
const a2 = segment2.params.ang.get();
const ang = makeAngle0_360(a2 - a1);
return Math.abs(180 - ang) > Math.min(Math.abs(360 - ang), Math.abs(0 - ang)) ? 180 : 0;
},
transform: degree => degree * DEG_RAD,
presentation: {
label: 'flip',
type: 'boolean',
transformOut: value => value === '180',
transformIn: value => value ? '180' : '0',
}
},
},
defineParamsScope: (objs, cb) => {
ConstraintDefinitions.AngleBetween.defineParamsScope(objs, cb);
},
collectPolynomials: (polynomials, params, constants) => {
ConstraintDefinitions.AngleBetween.collectPolynomials(polynomials, params, constants);
}
},
SegmentLength: {
id: 'SegmentLength',
name: 'Segment Length',
icon: DistanceConstraintIcon,
constants: {
length: {
type: 'number',
description: 'length of the segment',
initialValue: ([segment]) => {
const dx = segment.b.x - segment.a.x;
const dy = segment.b.y - segment.a.y;
return Math.sqrt(dx*dx + dy*dy);
},
// transform: length => length * length
}
},
defineParamsScope: ([segment], callback) => {
callback(segment.params.t);
},
collectPolynomials: (polynomials, [t], {length}) => {
polynomials.push(new Polynomial( - length).monomial(1).term(t, POW_1_FN));
},
setConstantsFromGeometry: ([segment], constants) => {
const dx = segment.b.x - segment.a.x;
const dy = segment.b.y - segment.a.y;
constants.length = Math.sqrt(dx*dx + dy*dy);
},
createAnnotations: ([segment], constraintInstance) => {
return [new LengthAnnotation(segment, constraintInstance)];
}
},
RadiusLength: {
id: 'RadiusLength',
name: 'Radius Length',
icon: RadiusConstraintIcon,
constants: {
length: {
type: 'number',
description: 'length of the radius',
initialValue: ([c]) => {
return c.r.get();
},
},
},
defineParamsScope: ([c], callback) => {
callback(c.r);
},
collectPolynomials: (polynomials, [r], {length}) => {
polynomials.push(new Polynomial(-length).monomial(1).term(r, POW_1_FN));
},
createAnnotations: ([segment], constraintInstance) => {
return [new RadiusLengthAnnotation(segment, constraintInstance)];
}
},
Polar: {
id: 'Polar',
name: 'Polar Coordinate',
defineParamsScope: ([segment, originPt, targetPt], callback) => {
callback(segment.params.ang);
callback(segment.params.t);
originPt.visitParams(callback);
targetPt.visitParams(callback);
},
collectPolynomials: (polynomials, [ang, t, x1, y1, x2, y2]) => {
polynomials.push(new Polynomial().monomial(1).term(x1, POW_1_FN).monomial(1).term(ang, COS_FN).term(t, POW_1_FN).monomial(-1).term(x2, POW_1_FN));
polynomials.push(new Polynomial().monomial(1).term(y1, POW_1_FN).monomial(1).term(ang, SIN_FN).term(t, POW_1_FN).monomial(-1).term(y2, POW_1_FN));
},
},
EqualRadius: {
id: 'EqualRadius',
name: 'Equal Radius',
icon: EqualConstraintIcon,
defineParamsScope: ([c1, c2], callback) => {
callback(c1.r);
callback(c2.r);
},
collectPolynomials: (polynomials, [r1, r2]) => {
polynomials.push(new Polynomial().monomial().term(r1, POW_1_FN).monomial(-1).term(r2, POW_1_FN));
},
},
EqualLength: {
id: 'EqualLength',
name: 'Equal Length',
icon: EqualConstraintIcon,
defineParamsScope: ([s1, s2], callback) => {
callback(s1.params.t);
callback(s2.params.t);
},
collectPolynomials: (polynomials, [t1, t2]) => {
polynomials.push(new Polynomial().monomial().term(t1, POW_1_FN).monomial(-1).term(t2, POW_1_FN));
},
},
LockPoint: {
id: 'LockPoint',
name: 'Lock Point',
icon: LockConstraintIcon,
constants: {
x: {
type: 'number',
description: 'X Coordinate',
initialValue: ([pt]) => pt.x,
},
y: {
type: 'number',
description: 'y Coordinate',
initialValue: ([pt]) => pt.y,
}
},
defineParamsScope: ([pt], callback) => {
pt.visitParams(callback);
},
collectPolynomials: (polynomials, [px, py], {x, y}: ResolvedConstants) => {
polynomials.push(new Polynomial(-x).monomial().term(px, POW_1_FN));
polynomials.push(new Polynomial(-y).monomial().term(py, POW_1_FN));
},
setConstantsFromGeometry: ([pt], constants: ConstantsDefinitions) => {
constants.x = pt.x + '';
constants.y = pt.y + '';
}
},
ArcConsistency: {
id: 'ArcConsistency',
name: 'Arc Consistency',
icon: GenericConstraintIcon,
defineParamsScope: ([arc], callback) => {
arc.visitParams(callback);
},
collectPolynomials: (polynomials, [r, ang1, ang2, ax, ay, bx, by, cx, cy]) => {
polynomials.push(new Polynomial()
.monomial(-1).term(ax, POW_1_FN)
.monomial().term(cx, POW_1_FN).monomial().term(r, POW_1_FN).term(ang1, COS_FN) );
polynomials.push(new Polynomial()
.monomial(-1).term(ay, POW_1_FN)
.monomial().term(cy, POW_1_FN).monomial().term(r, POW_1_FN).term(ang1, SIN_FN) );
polynomials.push(new Polynomial()
.monomial(-1).term(bx, POW_1_FN)
.monomial().term(cx, POW_1_FN).monomial().term(r, POW_1_FN).term(ang2, COS_FN) );
polynomials.push(new Polynomial()
.monomial(-1).term(by, POW_1_FN)
.monomial().term(cy, POW_1_FN).monomial().term(r, POW_1_FN).term(ang2, SIN_FN) );
},
},
Fillet: {
id: 'Fillet',
name: 'Fillet Between Two Lines',
icon: FilletConstraintIcon,
constants: {
inverted1: {
type: 'boolean',
initialValue: () => false,
},
inverted2: {
type: 'boolean',
initialValue: () => false,
}
},
defineParamsScope: ([l1, l2, arc], callback) => {
callback(l1.params.ang);
l1.a.visitParams(callback);
callback(l2.params.ang);
l2.a.visitParams(callback);
arc.c.visitParams(callback);
callback(arc.r);
},
collectPolynomials: (polynomials, [ang1, ax1, ay1, ang2, ax2, ay2, cx, cy, r], {inverted1, inverted2}) => {
polynomials.push(tangentLCPolynomial(ang1, ax1, ay1, cx, cy, r, inverted1));
polynomials.push(tangentLCPolynomial(ang2, ax2, ay2, cx, cy, r, inverted2));
},
},
};
function tangentLCPolynomial(ang, ax, ay, cx, cy, r, inverted) {
return new Polynomial(0)
.monomial(-1)
.term(cx, POW_1_FN)
.term(ang, SIN_FN)
.monomial(1)
.term(cy, POW_1_FN)
.term(ang, COS_FN)
.monomial(1)
.term(ax, POW_1_FN)
.term(ang, SIN_FN)
.monomial(-1)
.term(ay, POW_1_FN)
.term(ang, COS_FN)
.monomial(- (inverted ? -1 : 1))
.term(r, POW_1_FN);
}
const bezier3Polynomial = (p, t, p0, p1, p2, p3) => new Polynomial()
.monomial(-1)
.term(t, POW_3_FN)
.term(p0, POW_1_FN)
.monomial(3)
.term(t, POW_2_FN)
.term(p0, POW_1_FN)
.monomial(-3)
.term(t, POW_1_FN)
.term(p0, POW_1_FN)
.monomial(1)
.term(p0, POW_1_FN)
.monomial(3)
.term(t, POW_3_FN)
.term(p1, POW_1_FN)
.monomial(-6)
.term(t, POW_2_FN)
.term(p1, POW_1_FN)
.monomial(3)
.term(t, POW_1_FN)
.term(p1, POW_1_FN)
.monomial(-3)
.term(t, POW_3_FN)
.term(p2, POW_1_FN)
.monomial(3)
.term(t, POW_2_FN)
.term(p2, POW_1_FN)
.monomial(1)
.term(t, POW_3_FN)
.term(p3, POW_1_FN)
.monomial(-1)
.term(p, POW_1_FN);
export type ResolvedConstants = { [p: string]: any };
export type ConstantsDefinitions = { [p: string]: string };
export interface ConstraintSchema {
id: string;
name: string,
icon?: IconType,
constants?: {
[name: string]: {
readOnly?: boolean;
type: string,
description?: string,
transform?: (string) => any,
initialValue(objects: SolvableObject[]): any;
}
};
createAnnotations?: (objects: SolvableObject[], constraintInstance: AlgNumConstraint) => ConstraintAnnotation<any>[];
defineParamsScope: (object: SolvableObject[], cb: (param: Param) => void) => void;
collectPolynomials(polynomials: Polynomial[], params: Param[], resolvedConstants: ResolvedConstants, objects: SolvableObject[]): void;
setConstantsFromGeometry?: (object: SolvableObject[], resolvedConstants: ConstantsDefinitions) => void;
initialGuess?(params: Param[], resolvedConstants: ResolvedConstants): void;
}
export class AlgNumConstraint {
static Counter = 0;
id: string;
objects: SolvableObject[];
constants: ConstantsDefinitions;
resolvedConstants: ResolvedConstants;
internal: boolean;
schema: ConstraintSchema;
params: Param[];
stage: ISolveStage;
annotations: ConstraintAnnotation<any>[];
constructor(schema: ConstraintSchema, objects: SolvableObject[], constants?: ConstantsDefinitions, internal: boolean = false) {
this.id = schema.id + ':' + (AlgNumConstraint.Counter ++); // only for debug purposes - not persisted
this.objects = objects;
this.constants = constants;
this.resolvedConstants = undefined;
this.internal = internal;
this.schema = schema;
this.params = [];
this.stage = null;
if (this.schema.defineParamsScope) {
this.schema.defineParamsScope(this.objects, p => this.params.push(p));
}
if (!this.internal && this.schema.createAnnotations) {
this.annotations = this.schema.createAnnotations(this.objects, this);
} else {
this.annotations = [];
}
}
collectPolynomials(polynomials: Polynomial[]) {
this.schema.collectPolynomials(polynomials, this.params, this.resolvedConstants, this.objects);
}
resolveConstants(expressionResolver) {
if (this.constants) {
if (!this.resolvedConstants) {
this.resolvedConstants = {};
}
Object.keys(this.constants).map(name => {
let def = this.schema.constants[name];
let val: any = this.constants[name];
val = expressionResolver(val);
if (def.type === 'number') {
val = parseFloat(val);
} else if (def.type === 'boolean') {
val = val === 'true' || val === true;
}
if (def.transform) {
val = def.transform(val);
}
this.resolvedConstants[name] = val;
});
}
}
write(): ConstraintSerialization {
return {
typeId: this.schema.id,
objects: this.objects.map(o => o.id),
constants: this.constants,
stage: this.stage&&this.stage.index,
annotations: this.annotations.map(ann => ann.save())
}
}
static read({typeId, objects, constants, annotations}: ConstraintSerialization, index: {[key: string]: SolvableObject}) {
const schema = ConstraintDefinitions[typeId];
if (!schema) {
throw "constraint schema " + typeId + " doesn't exist";
}
const constraint = new AlgNumConstraint(schema, objects.map(oId => index[oId]), constants);
if (annotations) {
constraint.annotations.forEach((ann, i) => ann.load(annotations[i]));
}
return constraint;
}
initConstants() {
if (this.schema.constants) {
this.constants = {};
this.constantKeys.map(name => {
let val = this.schema.constants[name].initialValue(this.objects);
if (typeof val === 'number') {
val = val.toFixed(2);
}
this.updateConstant(name, val + '');
});
}
}
get editable() {
if (!this.schema.constants) {
return false;
}
const defs = Object.values(this.schema.constants);
for (let cd of defs) {
if (!cd.readOnly) {
return true;
}
}
return false;
}
setConstantsFromGeometry() {
if (this.schema.setConstantsFromGeometry) {
this.schema.setConstantsFromGeometry(this.objects, this.constants);
}
}
initialGuess() {
if (this.schema.initialGuess) {
this.schema.initialGuess(this.params, this.resolvedConstants);
}
}
get constantKeys() {
return Object.keys(this.schema.constants);
}
updateConstant(key, value) {
this.constants[key] = value + ''; // only string are allowed here
}
}
export interface ConstraintSerialization {
typeId: string;
objects: string[];
constants: ConstantsDefinitions;
stage: number;
annotations?: any
}