mirror of
https://github.com/xibyte/jsketcher
synced 2025-12-07 00:45:08 +01:00
206 lines
No EOL
5.3 KiB
JavaScript
206 lines
No EOL
5.3 KiB
JavaScript
|
|
|
|
TCAD.optim = {};
|
|
|
|
// convergence Rough 1e-8
|
|
// convergence Fine 1e-10
|
|
TCAD.math.solve_BFGS = function(subsys, convergence, smallF) {
|
|
|
|
var xsize = subsys.params.length;
|
|
if (xsize == 0) {
|
|
return "Success";
|
|
}
|
|
|
|
var xdir; //Vector
|
|
var B = new TCAD.math.Matrix(xsize, xsize);
|
|
B.identity();
|
|
var x = new TCAD.math.Vector(xsize);
|
|
var grad = new TCAD.math.Vector(xsize);
|
|
var h = new TCAD.math.Vector(xsize);
|
|
var y = new TCAD.math.Vector(xsize);
|
|
|
|
// Initial unknowns vector and initial gradient vector
|
|
TCAD.math.fillParams(subsys, x.data);
|
|
subsys.calcGrad(grad.data);
|
|
|
|
// Initial search direction oposed to gradient (steepest-descent)
|
|
xdir = grad.scalarMultiply(-1);
|
|
TCAD.math.lineSearch(subsys, xdir);
|
|
var err = subsys.errorSquare();
|
|
|
|
h = x.copy();
|
|
TCAD.math.fillParams(subsys, x.data);
|
|
h = x.subtract(h); // = x - xold
|
|
|
|
var maxIterNumber = 100 * xsize;
|
|
var divergingLim = 1e6*err + 1e12;
|
|
|
|
for (var iter=1; iter < maxIterNumber; iter++) {
|
|
|
|
if (h.norm() <= convergence || err <= smallF)
|
|
break;
|
|
if (err > divergingLim || err != err) // check for diverging and NaN
|
|
break;
|
|
|
|
y = grad.copy();
|
|
subsys.calcGrad(grad.data);
|
|
y = grad.subtract(y); // = grad - gradold
|
|
|
|
//Now calculate the BFGS update on B
|
|
// TCAD.math.bfgsUpdate(B, h, y);
|
|
TCAD.math.bfgsUpdateInverse(B, y, h);
|
|
|
|
|
|
xdir = B.multiply(grad).scalarMultiply(-1);
|
|
// xdir = grad.scalarMultiply(-1);
|
|
TCAD.math.lineSearch(subsys, xdir);
|
|
err = subsys.errorSquare();
|
|
|
|
h = x.copy();
|
|
TCAD.math.fillParams(subsys, x.data);
|
|
h = x.subtract(h); // = x - xold
|
|
}
|
|
|
|
if (err <= smallF)
|
|
return "Success";
|
|
if (h.norm() <= convergence)
|
|
return "Converged";
|
|
return "Failed";
|
|
};
|
|
|
|
TCAD.math.fillParams = function(sys, out) {
|
|
for (var p = 0; p < sys.params.length; p++) {
|
|
out[p][0] = sys.params[p].get();
|
|
}
|
|
};
|
|
|
|
TCAD.math.setParams2 = function(sys, point) {
|
|
for (var p = 0; p < sys.params.length; p++) {
|
|
sys.params[p].set(point[p][0]);
|
|
}
|
|
};
|
|
|
|
TCAD.math.bfgsUpdateInverse = function(H, y, s) {
|
|
// 18.16
|
|
var I = new TCAD.math.Matrix(s.rSize, s.rSize);
|
|
I.identity();
|
|
|
|
var yT = y.transpose();
|
|
var sT = s.transpose();
|
|
var yT_x_s = y.dot(s);
|
|
if (yT_x_s == 0) yT_x_h = .0000000001;
|
|
|
|
var p = 1 / yT_x_s;
|
|
|
|
var A = I.subtract( s.multiply(yT).scalarMultiply(p) )
|
|
var B = I.subtract( y.multiply(sT).scalarMultiply(p) )
|
|
var C = s.multiply(sT).scalarMultiply(p)
|
|
return A.multiply(H).multiply(C).add(C);
|
|
};
|
|
|
|
TCAD.math.bfgsUpdate = function(B, y, h) {
|
|
|
|
var B_x_h = B.multiply(h);
|
|
var hT_x_B = h.transpose().multiply(B);
|
|
var yT = y.transpose();
|
|
var y_x_yT = y.multiply(yT);
|
|
var yT_x_h = y.dot(h);
|
|
var hT_x_B_x_h = h.dot(B_x_h)
|
|
|
|
if (yT_x_h == 0) yT_x_h = .0000000001;
|
|
if (hT_x_B_x_h == 0) hT_x_B_x_h = .0000000001;
|
|
|
|
|
|
B = B.add( y_x_yT.scalarMultiply( 1 / yT_x_h ) );
|
|
B = B.subtract( ( B_x_h.multiply(hT_x_B) ).scalarMultiply( 1./hT_x_B_x_h ) );
|
|
};
|
|
|
|
TCAD.math.solve_SD = function(subsys) {
|
|
var i = 0;
|
|
var grad = new TCAD.math.Vector(subsys.params.length);
|
|
while (subsys.errorSquare() > 0.1 ) {
|
|
subsys.calcGrad(grad.data);
|
|
var xdir = grad.scalarMultiply(-1);
|
|
TCAD.math.lineSearch(subsys, xdir);
|
|
if (i ++ > 100) {
|
|
return;
|
|
}
|
|
}
|
|
console.log(subsys.errorSquare());
|
|
};
|
|
|
|
TCAD.math.lineSearch = function(subsys, xdir) {
|
|
|
|
var f1,f2,f3,alpha1,alpha2,alpha3,alphaStar;
|
|
|
|
var alphaMax = 1; //maxStep(xdir);
|
|
|
|
var x;
|
|
var x0 = new TCAD.math.Vector(subsys.params.length);
|
|
|
|
//Save initial values
|
|
TCAD.math.fillParams(subsys, x0.data);
|
|
|
|
//Start at the initial position alpha1 = 0
|
|
alpha1 = 0.;
|
|
f1 = subsys.errorSquare();
|
|
|
|
//Take a step of alpha2 = 1
|
|
alpha2 = 1.;
|
|
x = x0.add(xdir.scalarMultiply(alpha2));
|
|
TCAD.math.setParams2(subsys, x.data);
|
|
f2 = subsys.errorSquare();
|
|
|
|
//Take a step of alpha3 = 2*alpha2
|
|
alpha3 = alpha2*2;
|
|
x = x0.add(xdir.scalarMultiply(alpha3));
|
|
TCAD.math.setParams2(subsys, x.data);
|
|
f3 = subsys.errorSquare();
|
|
|
|
//Now reduce or lengthen alpha2 and alpha3 until the minimum is
|
|
//Bracketed by the triplet f1>f2<f3
|
|
while (f2 > f1 || f2 > f3) {
|
|
if (f2 > f1) {
|
|
//If f2 is greater than f1 then we shorten alpha2 and alpha3 closer to f1
|
|
//Effectively both are shortened by a factor of two.
|
|
alpha3 = alpha2;
|
|
f3 = f2;
|
|
alpha2 = alpha2 / 2;
|
|
x = x0.add( xdir.scalarMultiply(alpha2 ));
|
|
TCAD.math.setParams2(subsys, x.data);
|
|
f2 = subsys.errorSquare();
|
|
}
|
|
else if (f2 > f3) {
|
|
if (alpha3 >= alphaMax)
|
|
break;
|
|
//If f2 is greater than f3 then we increase alpha2 and alpha3 away from f1
|
|
//Effectively both are lengthened by a factor of two.
|
|
alpha2 = alpha3;
|
|
f2 = f3;
|
|
alpha3 = alpha3 * 2;
|
|
x = x0.add( xdir.scalarMultiply(alpha3));
|
|
TCAD.math.setParams2(subsys, x.data);
|
|
f3 = subsys.errorSquare();
|
|
}
|
|
}
|
|
//Get the alpha for the minimum f of the quadratic approximation
|
|
alphaStar = alpha2 + ((alpha2-alpha1)*(f1-f3))/(3*(f1-2*f2+f3));
|
|
|
|
//Guarantee that the new alphaStar is within the bracket
|
|
if (alphaStar >= alpha3 || alphaStar <= alpha1)
|
|
alphaStar = alpha2;
|
|
|
|
if (alphaStar > alphaMax)
|
|
alphaStar = alphaMax;
|
|
|
|
if (alphaStar != alphaStar)
|
|
alphaStar = 0.;
|
|
|
|
//Take a final step to alphaStar
|
|
x = x0 .add( xdir.scalarMultiply( alphaStar ) );
|
|
TCAD.math.setParams2(subsys, x.data);
|
|
|
|
return alphaStar;
|
|
|
|
};
|
|
|