jsketcher/modules/geom/impl/nurbs-ext.ts
2022-08-15 23:47:20 -07:00

305 lines
No EOL
9.3 KiB
TypeScript

import * as vec from "math/vec";
import {eqEps, TOLERANCE, TOLERANCE_01, TOLERANCE_SQ} from '../tolerance';
import {fmin_bfgs} from "math/optim/bfgs";
import {areEqual} from "math/equality";
import {NurbsCurveData} from "geom/curves/nurbsCurveData";
export function curveStep(curve, u, tessTol, scale) {
const ders = verb.eval.Eval.rationalCurveDerivatives( curve, u, 2 );
const d1 = ders[1];
const d2 = ders[2];
return genericCurveStep(d1, d2, tessTol, scale);
}
export function genericCurveStep(d1, d2, tessTol = 1, scale = 1) {
const r1 = d1;
const r2 = d2;
const r1lsq = vec.lengthSq(r1);
const r1l = Math.sqrt(r1lsq);
const r = r1lsq * r1l / vec.length(vec.cross(r1, r2));
const tol = tessTol / scale;
const step = 2 * Math.sqrt(tol*(2*r - tol)) / r1l;
return step;
}
export function curveDomain(curve: NurbsCurveData): [number, number] {
return [curve.knots[0], curve.knots[curve.knots.length - 1]];
}
export function distinctKnots(knots) {
const out = [knots[0]];
for (let i = 1; i < knots.length; ++i) {
if (out[out.length - 1] !== knots[i]) {
out.push(knots[i]);
}
}
return out;
}
export function curveTessellate(curve: NurbsCurveData, min?: number, max?: number, tessTol?: number, scale?: number) {
if (curve.degree === 1) {
return distinctKnots(curve.knots);
}
const domain = curveDomain(curve);
const [dmin, dmax] = domain;
let nSplits = curve.knots.length - 1;
let splitStep = (dmax - dmin) / nSplits;
nSplits = Math.round((max - min) / splitStep);
splitStep = (max - min) / nSplits;
const splits = [min];
for (let i = 1; i < nSplits; ++i) {
splits.push(min + i * splitStep);
}
splits.push(max);
return curveRefineTessellation(curve, splits, tessTol, scale)
}
export function curveRefineTessellation(curve, tess, tessTol, scale) {
const out = [];
function refine(u1, u2, step) {
if (step < u2 - u1) {
const mid = u1 + (u2 - u1) * 0.5;
refine(u1, mid, step);
out.push(mid);
refine(mid, u2, curveStep(curve, mid, tessTol, scale));
}
}
for (let i = 1; i < tess.length; ++i) {
const u1 = tess[i - 1];
out.push(u1);
refine(u1, tess[i], curveStep(curve, u1, tessTol, scale));
}
out.push(tess[tess.length - 1]);
return out;
}
export function curvePoint(curve, u) {
return verb.eval.Eval.rationalCurvePoint( curve, u );
}
export function curveClosestParam(curve, point) {
return verb.eval.Analyze.rationalCurveClosestParam(curve, point);
}
export const surfaceClosestParam = verb.eval.Analyze.rationalSurfaceClosestParam;
export function surfaceIntersect(surface0, surface1) {
const tess0 = verb.eval.Tess.rationalSurfaceAdaptive(surface0);
const tess1 = verb.eval.Tess.rationalSurfaceAdaptive(surface1);
function fixTessNaNPoitns(s, tess) {
for (let i = 0; i < tess.points.length; i++) {
const pt = tess.points[i];
if (Number.isNaN(pt[0]) || Number.isNaN(pt[1]) || Number.isNaN(pt[2])) {
const [u, v] = tess.uvs[i];
tess.points[i] = verb.eval.Eval.rationalSurfacePoint(s, u, v);
}
}
}
fixTessNaNPoitns(surface0, tess0);
fixTessNaNPoitns(surface1, tess1);
const resApprox = meshesIntersect(tess0,tess1, TOLERANCE, TOLERANCE_SQ, TOLERANCE_01);
const exactPls = resApprox.map(function(pl) {
return pl.map(function(inter) {
return verb.eval.Intersect.surfacesAtPointWithEstimate(surface0,surface1,inter.uv0,inter.uv1,TOLERANCE);
});
});
const degree = Math.max(surfaceMaxDegree(surface0) === 1 && surfaceMaxDegree(surface1));
const inserts = degree - 1;
const nurbses = [];
//TODO: temporary workaround. evenly distribute points accordingly to degree.
//TODO: it won't work for ellipses.
//TODO: it also creates unnecessary degree if a cylinder is cut by a plane along it's Y axis(heightwise)
for (const pl of exactPls) {
const points = pl.map(ip => ip.point);
const polyline = verb.eval.Make.polyline(points);
const [uMin, uMax] = curveDomain(polyline);
const insertStep = (uMax - uMin) / (inserts + 1);
const normalizedPoints = [points[0]];
for (let i = 0; i < inserts; i++) {
const roughPt = curvePoint(polyline, i+insertStep);
const uv0 = verb.eval.Analyze.rationalSurfaceClosestParam(surface0, roughPt);
const uv1 = verb.eval.Analyze.rationalSurfaceClosestParam(surface1, roughPt);
const pt = verb.eval.Intersect.surfacesAtPointWithEstimate(surface0,surface1,uv0,uv1,TOLERANCE);
normalizedPoints.push(pt);
}
normalizedPoints.push(points[points.length - 1]);
const nurbs = verb.eval.Make.rationalInterpCurve(normalizedPoints, degree);
nurbses.push(nurbs);
}
return nurbses;
}
export function meshesIntersect(mesh0,mesh1, TOLERANCE, TOLERANCE_SQ, TOLERANCE_01) {
const bbtree0 = new verb.core.LazyMeshBoundingBoxTree(mesh0);
const bbtree1 = new verb.core.LazyMeshBoundingBoxTree(mesh1);
const bbints = verb.eval.Intersect.boundingBoxTrees(bbtree0,bbtree1,TOLERANCE);
const segments = verb.core.ArrayExtensions.unique(bbints.map(function(ids) {
return verb.eval.Intersect.triangles(mesh0,ids.item0,mesh1,ids.item1);
}).filter(function(x) {
return x != null;
}).filter(function(x1) {
return verb.core.Vec.distSquared(x1.min.point,x1.max.point) > TOLERANCE_SQ;
}),function(a,b) {
const s1 = verb.core.Vec.sub(a.min.uv0,b.min.uv0);
const d1 = verb.core.Vec.dot(s1,s1);
const s2 = verb.core.Vec.sub(a.max.uv0,b.max.uv0);
const d2 = verb.core.Vec.dot(s2,s2);
const s3 = verb.core.Vec.sub(a.min.uv0,b.max.uv0);
const d3 = verb.core.Vec.dot(s3,s3);
const s4 = verb.core.Vec.sub(a.max.uv0,b.min.uv0);
const d4 = verb.core.Vec.dot(s4,s4);
return d1 < TOLERANCE_01 && d2 < TOLERANCE_01 || d3 < TOLERANCE_01 && d4 < TOLERANCE_01;
});
return verb.eval.Intersect.makeMeshIntersectionPolylines(segments);
}
export function surfaceMaxDegree(surface) {
return Math.max(surface.degreeU, surface.degreeV);
}
export function curveIntersect(curve1, curve2) {
const result = [];
const segs1 = curveTessellate(curve1);
const segs2 = curveTessellate(curve2);
for (let i = 0; i < segs1.length - 1; i++) {
const a1 = segs1[i];
const b1 = segs1[i + 1];
for (let j = 0; j < segs2.length - 1; j++) {
const a2 = segs2[j];
const b2 = segs2[j + 1];
//TODO: minimize
const isec = intersectSegs(a1, b1, a2, b2);
if (isec !== null) {
const {point1, point2, l1, l2} = isec;
let u1 = curveClosestParam(curve1, point1);
let u2 = curveClosestParam(curve2, point2);
[u1, u2] = curveExactIntersection(curve1, curve2, u1, u2);
result.push({
u0: u1,
u1: u2,
p0: point1,
p1: point2
});
if (areEqual(u1, l1, TOLERANCE )) {
i ++;
}
if (areEqual(u2, l2, TOLERANCE )) {
j ++;
}
}
}
}
return result;
}
function curveExactIntersection(curve1, curve2, u1, u2) {
function f([u1, u2]) {
return vec.lengthSq( vec.sub(curvePoint(curve1, u1), curvePoint(curve2, u2)));
}
function grad([u1, u2]) {
const d1 = verb.eval.Eval.rationalCurveDerivatives(curve1, u1, 1);
const d2 = verb.eval.Eval.rationalCurveDerivatives(curve2, u2, 1);
const r = vec.sub(d1[0], d2[0]);
const drdu = d1[1];
const drdt = vec.mul(d2[1], -1);
return [2 * vec.dot(drdu, r), 2 * vec.dot(drdt,r)];
}
const params = [u1, u2];
return fmin_bfgs(f, params, TOLERANCE_SQ, grad).solution;
}
function lineLineIntersection(p1, p2, v1, v2) {
const zAx = vec.cross(v1, v2);
const n1 = vec._normalize(vec.cross(zAx, v1));
const n2 = vec._normalize(vec.cross(zAx, v2));
return {
u1: vec.dot(n2, vec.sub(p2, p1)) / vec.dot(n2, v1),
u2: vec.dot(n1, vec.sub(p1, p2)) / vec.dot(n1, v2),
}
}
function intersectSegs(a1, b1, a2, b2) {
const v1 = vec.sub(b1, a1);
const v2 = vec.sub(b2, a2);
const l1 = vec.length(v1);
const l2 = vec.length(v2);
vec._div(v1, l1);
vec._div(v2, l2);
const {u1, u2} = lineLineIntersection(a1, a2, v1, v2);
const point1 = vec.add(a1, vec.mul(v1, u1));
const point2 = vec.add(a2, vec.mul(v2, u2));
const p2p = vec.lengthSq(vec.sub(point1, point2));
const eq = (a, b) => areEqual(a, b, TOLERANCE);
if (u1 !== Infinity && u2 !== Infinity && areEqual(p2p, 0, TOLERANCE_SQ) &&
((u1 >0 && u1 < l1) || eq(u1, 0) || eq(u1, l1)) &&
((u2 >0 && u2 < l2) || eq(u2, 0) || eq(u2, l2))
) {
return {point1, point2, u1, u2, l1, l2}
}
return null;
}
export function normalizeCurveEnds(curve) {
for (let i = 0; i < curve.knots.length; i++) {
const val = curve.knots[i];
if (eqEps(val, 0)) {
curve.knots[i] = 0;
} else if (eqEps(val, 1)) {
curve.knots[i] = 1;
}
}
}
export function normalizeCurveParametrization(curve) {
const [min, max] = curveDomain(curve);
const d = max - min;
for (let i = 0; i < curve.knots.length; i++) {
const val = curve.knots[i];
if (eqEps(val, min)) {
curve.knots[i] = 0;
} else if (eqEps(val, max)) {
curve.knots[i] = 1;
} else {
curve.knots[i] = (val - min) / d;
}
}
return curve;
}
export function normalizeCurveParametrizationIfNeeded(curve) {
const [min, max] = curveDomain(curve);
if (min !== 0 || max !== 1) {
normalizeCurveParametrization(curve)
}
}
export function curveInvert(curve) {
const reversed = verb.eval.Modify.curveReverse(curve);
return reversed;
}