mirror of
https://github.com/xibyte/jsketcher
synced 2025-12-07 00:45:08 +01:00
117 lines
No EOL
3.3 KiB
JavaScript
117 lines
No EOL
3.3 KiB
JavaScript
import * as vec from 'math/vec';
|
|
import { iteratePath } from '../cad-utils';
|
|
import NurbsCurve from 'geom/curves/nurbsCurve';
|
|
import { veqXYZ } from 'geom/tolerance';
|
|
import curveTess, { curveTessParams } from 'geom/impl/curve/curve-tess';
|
|
import { distanceAB } from "math/distance";
|
|
import { areEqual, TOLERANCE } from "math/equality";
|
|
import { circleFromPoints, radiusOfCurvature } from "geom/euclidean";
|
|
|
|
export function getSketchBoundaries(sceneFace) {
|
|
const boundary = { lines: [], arcs: [], circles: [], nurbses: [] };
|
|
const w2sTr = sceneFace.worldToSketchTransformation;
|
|
let _w2sTrArr = null;
|
|
const w2sTrArr = () => _w2sTrArr || (_w2sTrArr = w2sTr.toArray());
|
|
if (!sceneFace.brepFace) {
|
|
return boundary;
|
|
}
|
|
for (const he of sceneFace.brepFace.edges) {
|
|
const edge = sceneFace.shell.brepRegistry.get(he.edge);
|
|
if (!edge) {
|
|
continue;
|
|
}
|
|
const id = edge.id;
|
|
const curve = he.edge.curve.impl;
|
|
if (curve.constructor.name === 'NurbsCurve' && curve.degree() !== 1) {
|
|
const curve2d = curve.transform(w2sTrArr());
|
|
const arcRadius = findArcRadius(curve2d);
|
|
if (arcRadius !== null) {
|
|
const [from, to] = curve2d.domain();
|
|
const [A, DA, DDA] = curve2d.eval(from, 2);
|
|
const [B, DB] = curve2d.eval(to, 1);
|
|
|
|
const mA = vec.normalize(DA);
|
|
const mmA = vec.normalize(DDA);
|
|
|
|
const orient = mA[0] * mmA[1] - mA[1] * mmA[0];
|
|
|
|
const k = orient < 0 ? -1 : 1;
|
|
|
|
if (veqXYZ(A[0], A[1], 0, B[0], B[1], 0)) {
|
|
const centripetal = perpXY(vec.mul(mA, k * arcRadius));
|
|
const c = vec._add(centripetal, A);
|
|
boundary.circles.push({
|
|
id,
|
|
c: { x: c[0], y: c[1] },
|
|
r: arcRadius
|
|
});
|
|
continue;
|
|
}
|
|
|
|
const centripetalB = vec.normalize(DB);
|
|
perpXY(centripetalB);
|
|
|
|
const proj = vec.dot(mA, vec.sub(A, B));
|
|
const u = proj / vec.dot(mA, centripetalB);
|
|
|
|
const C = vec._add(vec._mul(centripetalB, u), B);
|
|
if (k === -1) {
|
|
boundary.arcs.push({
|
|
id,
|
|
a: { x: B[0], y: B[1] },
|
|
b: { x: A[0], y: A[1] },
|
|
c: { x: C[0], y: C[1] }
|
|
});
|
|
} else {
|
|
boundary.arcs.push({
|
|
id,
|
|
a: { x: A[0], y: A[1] },
|
|
b: { x: B[0], y: B[1] },
|
|
c: { x: C[0], y: C[1] }
|
|
});
|
|
}
|
|
|
|
} else {
|
|
const data = curve.transform(w2sTrArr()).serialize();
|
|
data.id = id;
|
|
boundary.nurbses.push(data);
|
|
}
|
|
} else {
|
|
const addSegment = (id, a, b) => {
|
|
boundary.lines.push({
|
|
id,
|
|
a: { x: a.x, y: a.y },
|
|
b: { x: b.x, y: b.y }
|
|
});
|
|
};
|
|
addSegment(id, w2sTr.apply(he.vertexA.point), w2sTr.apply(he.vertexB.point));
|
|
}
|
|
}
|
|
return boundary;
|
|
}
|
|
|
|
function findArcRadius(curve) {
|
|
if (curve.degree() !== 2) {
|
|
return null;
|
|
}
|
|
const [uMin, uMax] = curve.domain();
|
|
const knots = curveTessParams(curve, uMin, uMax);
|
|
let prevRadCur = null;
|
|
for (const knot of knots) {
|
|
const [P, D, DD] = curve.eval(knot, 2);
|
|
const radCur = radiusOfCurvature(D, DD);
|
|
if (prevRadCur !== null && !areEqual(radCur, prevRadCur, 0.1)) {
|
|
return null;
|
|
}
|
|
prevRadCur = radCur;
|
|
}
|
|
return prevRadCur;
|
|
}
|
|
|
|
function perpXY(v) {
|
|
const [x, y] = v;
|
|
|
|
v[0] = - y;
|
|
v[1] = x;
|
|
return v;
|
|
} |