import * as vec from "../../../math/vec"; import * as math from '../../../math/math' import {TOLERANCE, TOLERANCE_SQ} from '../tolerance'; import {fmin_bfgs} from "../../../math/optim"; export function curveStep(curve, u, tessTol, scale) { tessTol = tessTol || 1; scale = scale || 1; let ders = verb.eval.Eval.rationalCurveDerivatives( curve, u, 2 ); let r1 = ders[1]; let r2 = ders[2]; let r1lsq = vec.lengthSq(r1); let r1l = Math.sqrt(r1lsq); let r = r1lsq * r1l / vec.length(vec.cross(r1, r2)); let tol = tessTol / scale; let step = 2 * Math.sqrt(tol*(2*r - tol)) / r1l; return step; } export function curveDomain(curve) { return [curve.knots[0], curve.knots[curve.knots.length - 1]]; } export function curveParts(curve) { let out = [curve.knots[0]]; for (let i = 1; i < curve.knots.length; ++i) { if (out[out.length - 1] !== curve.knots[i]) { out.push(curve.knots[i]); } } return out; } export function curveTessellateToParams(curve, tessTol, scale) { let domain = curveDomain(curve); if (curve.degree === 1) { return domain; } let [min, max] = domain; let out = []; let nSplits = curve.knots.length - 1; let splitStep = (max - min) / nSplits let splits = [min]; for (let i = 1; i < nSplits; ++i) { splits.push(i * splitStep); } splits.push(max); function refine(u1, u2, step) { if (step < u2 - u1) { let mid = u1 + (u2 - u1) * 0.5; refine(u1, mid, step); out.push(mid); refine(mid, u2, curveStep(curve, mid, tessTol, scale)); } } for (let i = 1; i < splits.length; ++i) { let u1 = splits[i - 1]; out.push(u1); refine(u1, splits[i], curveStep(curve, u1, tessTol, scale)); } out.push(max); return out; // let out = []; // function tessRange(begin, end) { // let u = begin; // while (u < end) { // out.push(u); // u += curveStep(curve, u, tessTol, scale ); // } // } // let parts = curveParts(curve); // for (let i = 1; i < parts.length; ++i) { // let begin = parts[i - 1]; // let end = parts[i]; // tessRange(begin, end); // } // out.push(parts[parts.length - 1]); // return out; } export function curveTessellate(curve, tessTol, scale) { let params = curveTessellateToParams(curve, tessTol, scale); let out = []; if (params.length === 0) { return out; } out.push(curvePoint(curve, params[0])); for (let i = 1; i < params.length; ++i) { let p = curvePoint(curve, params[i]); if (!math.areVectorsEqual3(out[out.length - 1], p, TOLERANCE)) { out.push(p); } } return out; } export function curvePoint(curve, u) { return verb.eval.Eval.rationalCurvePoint( curve, u ); } export function curveClosestParam(curve, point) { return verb.eval.Analyze.rationalCurveClosestParam(curve, point); } export function surfaceIntersect(surface0, surface1) { const tess1 = verb.eval.Tess.rationalSurfaceAdaptive(surface0); const tess2 = verb.eval.Tess.rationalSurfaceAdaptive(surface1); const resApprox = verb.eval.Intersect.meshes(tess1,tess2); const exactPls = resApprox.map(function(pl) { return pl.map(function(inter) { return verb.eval.Intersect.surfacesAtPointWithEstimate(surface0,surface1,inter.uv0,inter.uv1,TOLERANCE); }); }); return exactPls.map(function(x) { return verb.eval.Make.rationalInterpCurve(x.map(function(y) { return y.point; }), surfaceMaxDegree(surface0) === 1 && surfaceMaxDegree(surface1) === 1 ? 1 : x.length - 1); }).map(cd => new verb.geom.NurbsCurve(cd)); } export function surfaceMaxDegree(surface) { return Math.max(surface.degreeU, surface.degreeV); } export function curveIntersect(curve1, curve2) { let result = []; let segs1 = curveTessellate(curve1); let segs2 = curveTessellate(curve2); for (let i = 0; i < segs1.length - 1; i++) { let a1 = segs1[i]; let b1 = segs1[i + 1]; for (let j = 0; j < segs2.length - 1; j++) { let a2 = segs2[j]; let b2 = segs2[j + 1]; //TODO: minimize let isec = intersectSegs(a1, b1, a2, b2, TOLERANCE); if (isec !== null) { let {point1, point2, l1, l2} = isec; let u1 = curveClosestParam(curve1, point1); let u2 = curveClosestParam(curve2, point2); [u1, u2] = curveExactIntersection(curve1, curve2, u1, u2); result.push({ u0: u1, u1: u2, point0: point1, point1: point2 }); if (math.areEqual(u1, l1, TOLERANCE )) { i ++; } if (math.areEqual(u2, l2, TOLERANCE )) { j ++; } } } } return result; } function curveExactIntersection(curve1, curve2, u1, u2) { function f([u1, u2]) { return vec.lengthSq( vec.sub(curvePoint(curve1, u1), curvePoint(curve2, u2))); } function grad([u1, u2]) { let d1 = verb.eval.Eval.rationalCurveDerivatives(curve1, u1, 1); let d2 = verb.eval.Eval.rationalCurveDerivatives(curve2, u2, 1); let r = vec.sub(d1[0], d2[0]); let drdu = d1[1]; let drdt = vec.mul(-1, d2[1]); return [2 * vec.dot(drdu, r), 2 * vec.dot(drdt,r)]; } let params = [u1, u2]; return fmin_bfgs(f, params, TOLERANCE_SQ, grad).solution; } function lineLineIntersection(p1, p2, v1, v2) { let zAx = vec.cross(v1, v2); const n1 = vec._normalize(vec.cross(zAx, v1)); const n2 = vec._normalize(vec.cross(zAx, v2)); return { u1: vec.dot(n2, vec.sub(p2, p1)) / vec.dot(n2, v1), u2: vec.dot(n1, vec.sub(p1, p2)) / vec.dot(n1, v2), } } function intersectSegs(a1, b1, a2, b2) { let v1 = vec.sub(b1, a1); let v2 = vec.sub(b2, a2); let l1 = vec.length(v1); let l2 = vec.length(v2); vec._div(v1, l1); vec._div(v2, l2); let {u1, u2} = lineLineIntersection(a1, a2, v1, v2); let point1 = vec.add(a1, vec.mul(v1, u1)); let point2 = vec.add(a2, vec.mul(v2, u2)); let p2p = vec.lengthSq(vec.sub(point1, point2)); let eq = (a, b) => math.areEqual(a, b, TOLERANCE); if (u1 !== Infinity && u2 !== Infinity && math.areEqual(p2p, 0, TOLERANCE_SQ) && ((u1 >0 && u1 < l1) || eq(u1, 0) || eq(u1, l1)) && ((u2 >0 && u2 < l2) || eq(u2, 0) || eq(u2, l2)) ) { return {point1, point2, u1, u2, l1, l2} } return null; } function dist(p1, p2) { return math.distance3(p1[0], p1[1], p1[2], p2[0], p2[1], p2[2]); }