import Vector from 'math/vector'; import BBox from 'math/bbox' import {Matrix3x4} from 'math/matrix'; import {equal} from 'math/equality'; import {area, isCCW, isPointInsidePolygon} from "geom/euclidean"; export {area, isCCW, isPointInsidePolygon}; export const FACE_COLOR = 0xB0C4DE; export function createSquare(w, h) { w /= 2; h /= 2; return [ new Vector(-w, -h, 0), new Vector( w, -h, 0), new Vector( w, h, 0), new Vector(-w, h, 0) ]; } export function csgVec(v) { return new CSG.Vector3D(v.x, v.y, v.z); } export function vec(v) { return new Vector(v.x, v.y, v.z); } export function checkPolygon(poly) { if (poly.length < 3) { throw new Error('Polygon should contain at least 3 point'); } } export function createPoint0(x, y, z) { // var g = new THREE.PlaneGeometry(0.05, 0.05); // var m = new THREE.MeshBasicMaterial({color: 0x0000ff, side: THREE.DoubleSide}); // return new THREE.Mesh(g, m); let material = new THREE.ShaderMaterial({ // color: 0xff0000, // linewidth: 5 vertexShader : 'void main() {\n\t' + 'gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );' + 'gl_PointSize =10.0;\n\t' + '\n}', fragmentShader : 'void main() {\n\t' + "vec2 coord = gl_PointCoord - vec2(0.5); //from [0,1] to [-0.5,0.5]\n" + "if(length(coord) > 0.5) //outside of circle radius?\n" + " discard;\n"+ "else\n"+ " gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n" +'\n}' }); const geometry = new THREE.BufferGeometry().setFromPoints( [new THREE.Vector3(x, y, z)] ); // geometry.vertices.push(new THREE.Vector3(x+.001, y+.001, z+.001)); // var line = new THREE.PointCloud(geometry, material); // line.position.x = x; // line.position.y = y; // line.position.z = z; // return line; material = new THREE.SpriteMaterial( { color: 0xffffff, fog: false } ); const sprite = new THREE.Sprite( material ); sprite.position.set( x, y, z ); return sprite; } export function createPoint1(x, y, z) { const geometry = new THREE.SphereGeometry( 5, 16, 16 ); const material = new THREE.MeshBasicMaterial( {color: 0xff0000} ); const sphere = new THREE.Mesh(geometry, material); sphere.position.x = x; sphere.position.y = y; sphere.position.z = z; return sphere; } export function createLine(a, b, color) { const material = new THREE.LineBasicMaterial({ color: color, linewidth: 1 }); const vertices = [] vertices.push(new THREE.Vector3(a.x, a.y, a.z)); vertices.push(new THREE.Vector3(b.x, b.y, b.z)); const geometry = new THREE.BufferGeometry().setFromPoints( vertices ); return new THREE.Line(geometry, material); } export function createSolidMaterial() { return new THREE.MeshPhongMaterial({ vertexColors: THREE.FaceColors, color: FACE_COLOR, shininess: 0, polygonOffset : true, polygonOffsetFactor : 1, polygonOffsetUnits : 2, side : THREE.DoubleSide }); } export function intercept(obj, methodName, aspect) { const originFunc = obj[methodName]; obj[methodName] = function() { const $this = this; aspect(function() {originFunc.apply($this, arguments)}, arguments); } } export function fixCCW(path, normal) { const _2DTransformation = new Matrix3x4().setBasis(someBasis(path, normal)).invert(); const path2D = []; for (let i = 0; i < path.length; ++i) { path2D[i] = _2DTransformation.apply(path[i]); } if (!isCCW(path2D)) { path = path.slice(0); path.reverse(); } return path; } export function someBasis2(normal) { const x = normal.cross(normal.randomNonParallelVector()); const y = normal.cross(x).unit(); return [x, y, normal]; } export function someBasis(twoPointsOnPlane, normal) { const a = twoPointsOnPlane[0]; const b = twoPointsOnPlane[1]; const x = b.minus(a).normalize(); const y = normal.cross(x).normalize(); return [x, y, normal]; } export function normalOfCCWSeq(ccwSequence) { const a = ccwSequence[0]; const b = ccwSequence[1]; for (let i = 2; i < ccwSequence.length; ++i) { const c = ccwSequence[i]; const normal = b.minus(a).cross(c.minus(a)).normalize(); if (!equal(normal.length(), 0)) { return normal; } } return null; } export function normalOfCCWSeqTHREE(ccwSequence) { const a = ccwSequence[0]; const b = ccwSequence[1].clone(); const c = ccwSequence[2].clone(); return b.sub(a).cross(c.sub(a)).normalize(); } export function calculateExtrudedLid(sourcePolygon, normal, direction, expansionFactor) { const lid = []; const length = sourcePolygon.length; let work; let si; if (!!expansionFactor && expansionFactor != 1) { if (expansionFactor < 0.001) expansionFactor = 0.0001; const source2d = []; work = []; const _3dTr = new Matrix3x4().setBasis(someBasis2(new CSG.Vector3D(normal))); // use passed basis const _2dTr = _3dTr.invert(); const sourceBBox = new BBox(); const workBBox = new BBox(); for (si = 0; si < length; ++si) { const sourcePoint = _2dTr.apply(sourcePolygon[si]); source2d[si] = sourcePoint; work[si] = sourcePoint.multiply(expansionFactor); work[si].z = source2d[si].z = 0; sourceBBox.checkBounds(sourcePoint.x, sourcePoint.y); workBBox.checkBounds(work[si].x, work[si].y) } const alignVector = workBBox.center().minus(sourceBBox.center()); const depth = normal.dot(sourcePolygon[0]); for (si = 0; si < length; ++si) { work[si] = work[si].minus(alignVector); work[si].z = depth; work[si] = _3dTr.apply(work[si]); } } else { work = sourcePolygon; } for (si = 0; si < length; ++si) { lid[si] = work[si].plus(direction); } return lid; } export function triangulate(path, normal) { const _3dTransformation = new Matrix3x4().setBasis(someBasis2(normal)); const _2dTransformation = _3dTransformation.invert(); let i; const shell = []; for (i = 0; i < path.length; ++i) { shell[i] = _2dTransformation.apply(path[i].pos); } const myTriangulator = new PNLTRI.Triangulator(); return myTriangulator.triangulate_polygon( [ shell ] ); // return THREE.Shape.utils.triangulateShape( f2d.shell, f2d.holes ); } export function isCurveClass(className) { return false; } let POLYGON_COUNTER = 0; export function Polygon(shell, holes, normal) { this.id = POLYGON_COUNTER ++; if (!holes) { holes = []; } let h; checkPolygon(shell); for (h = 0; h < holes.length; ++h) { checkPolygon(holes[h]); } if (normal === undefined) { normal = normalOfCCWSeq(shell); } else { shell = fixCCW(shell, normal); if (holes.length > 0) { const neg = normal.negate(); for (h = 0; h < holes.length; ++h) { holes[h] = fixCCW(holes[h], neg); } } } this.normal = normal; this.shell = shell; this.holes = holes; } Polygon.prototype.reverse = function(triangle) { const first = triangle[0]; triangle[0] = triangle[2]; triangle[2] = first; }; Polygon.prototype.flip = function() { return new Polygon(this.shell, this.holes, this.normal.negate()); }; Polygon.prototype.shift = function(target) { const shell = []; let i; for (i = 0; i < this.shell.length; ++i) { shell[i] = this.shell[i].plus(target); } const holes = []; for (let h = 0; h < this.holes.length; ++h) { holes[h] = []; for (i = 0; i < this.holes[h].length; ++i) { holes[h][i] = this.holes[h][i].plus(target); } } return new Polygon(shell, holes, this.normal); }; Polygon.prototype.get2DTransformation = function() { const _3dTransformation = new Matrix3x4().setBasis(someBasis(this.shell, this.normal)); const _2dTransformation = _3dTransformation.invert(); return _2dTransformation; }; Polygon.prototype.to2D = function() { const _2dTransformation = this.get2DTransformation(); let i, h; const shell = []; const holes = []; for (i = 0; i < this.shell.length; ++i) { shell[i] = _2dTransformation.apply(this.shell[i]); } for (h = 0; h < this.holes.length; ++h) { holes[h] = []; for (i = 0; i < this.holes[h].length; ++i) { holes[h][i] = _2dTransformation.apply(this.holes[h][i]); } } return {shell: shell, holes: holes}; }; Polygon.prototype.collectPaths = function(paths) { paths.push(this.shell); paths.push.apply(paths, this.holes); }; Polygon.prototype.triangulate = function() { function triangulateShape( contour, holes ) { const myTriangulator = new PNLTRI.Triangulator(); return myTriangulator.triangulate_polygon( [ contour ].concat(holes) ); } let i, h; const f2d = this.to2D(); for (i = 0; i < f2d.shell.length; ++i) { f2d.shell[i] = f2d.shell[i].three(); } for (h = 0; h < f2d.holes.length; ++h) { for (i = 0; i < f2d.holes[h].length; ++i) { f2d.holes[h][i] = f2d.holes[h][i].three(); } } return triangulateShape( f2d.shell, f2d.holes ); // return THREE.Shape.utils.triangulateShape( f2d.shell, f2d.holes ); }; Polygon.prototype.eachVertex = function(handler) { let i, h; for (i = 0; i < this.shell.length; ++i) { if (handler(this.shell, i) === true) return; } for (h = 0; h < this.holes.length; ++h) { for (i = 0; i < this.holes[h].length; ++i) { if (handler(this.holes[h], i) === true) return; } } }; /** @constructor */ export function Sketch() { this.group = new THREE.Object3D(); } export function iteratePath(path, shift, callback) { let p, q; const n = path.length; for (p = n - 1,q = 0;q < n; p = q++) { const ai = (p + shift) % n; const bi = (q + shift) % n; if (!callback(path[ai], path[bi], ai, bi, q, path)) { break } } } export function addAll(arr, arrToAdd) { for (let i = 0; i < arrToAdd.length; i++) { arr.push(arrToAdd[i]); } } export function arrFlatten1L(arr) { const result = []; for (let i = 0; i < arr.length; i++) { addAll(result, arr[i]); } return result; } const Counters = { shared : 0 };