diff --git a/src/cad/Java2JS.java b/src/cad/Java2JS.java
new file mode 100644
index 00000000..0d095786
--- /dev/null
+++ b/src/cad/Java2JS.java
@@ -0,0 +1,136 @@
+package cad;
+
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.List;
+import java.util.Scanner;
+import java.util.regex.MatchResult;
+import java.util.regex.Matcher;
+import java.util.regex.Pattern;
+
+public class Java2JS {
+
+ List comments = new ArrayList<>();
+ int initCount = 0;
+
+ public void convert() {
+
+ Scanner scanner = new Scanner(Java2JS.class.getResourceAsStream("lm.in"));
+
+ String text = scanner.useDelimiter("\\A").next();
+
+ text = rplc(text, "(?= comment.start() && matcher.start() < comment.end()) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+
+ private String rplcParams(String text) {
+
+ buildComment(text);
+
+ Pattern p = Pattern.compile("this\\.[^\\(]+=\\s*function\\s*\\((.+)\\)");
+ Matcher matcher = p.matcher(text);
+
+ List replacements = new ArrayList<>();
+
+ while (matcher.find()) {
+ replacements.add(matcher.toMatchResult());
+ }
+
+ Collections.reverse(replacements);
+
+ int off = text.length();
+ StringBuilder out = new StringBuilder();
+ for (MatchResult m : replacements) {
+ if (isComment(m)) continue;
+ out.insert(0, text.substring(m.end(1), off));
+ String sst = m.group();
+ out.insert(0, sst.replaceAll("(?This implementation should work even for over-determined systems
+ * (i.e. systems having more point than equations). Over-determined systems
+ * are solved by ignoring the point which have the smallest impact according
+ * to their jacobian column norm. Only the rank of the matrix and some loop bounds
+ * are changed to implement this.
+ *
+ * The resolution engine is a simple translation of the MINPACK lmder routine with minor
+ * changes. The changes include the over-determined resolution, the use of
+ * inherited convergence checker and the Q.R. decomposition which has been
+ * rewritten following the algorithm described in the
+ * P. Lascaux and R. Theodor book Analyse numérique matricielle
+ * appliquée à l'art de l'ingénieur, Masson 1986.
+ * The authors of the original fortran version are:
+ *
+ * - Argonne National Laboratory. MINPACK project. March 1980
+ * - Burton S. Garbow
+ * - Kenneth E. Hillstrom
+ * - Jorge J. More
+ *
+ * The redistribution policy for MINPACK is available here, for convenience, it
+ * is reproduced below.
+ *
+ *
+ * |
+ * Minpack Copyright Notice (1999) University of Chicago.
+ * All rights reserved
+ * |
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * - Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * - Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ * - The end-user documentation included with the redistribution, if any,
+ * must include the following acknowledgment:
+ *
This product includes software developed by the University of
+ * Chicago, as Operator of Argonne National Laboratory.
+ * Alternately, this acknowledgment may appear in the software itself,
+ * if and wherever such third-party acknowledgments normally appear.
+ * - WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
+ * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
+ * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
+ * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
+ * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
+ * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
+ * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
+ * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
+ * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
+ * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
+ * BE CORRECTED.
+ * - LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
+ * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
+ * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
+ * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
+ * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
+ * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
+ * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
+ * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
+ * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
+ * POSSIBILITY OF SUCH LOSS OR DAMAGES.
+ *
|
+ *
+ *
+ * @version $Id: LevenbergMarquardtOptimizer.java 1416643 2012-12-03 19:37:14Z tn $
+ */
+function LMOptimizer() {
+
+ /** Number of solved point. */
+ private int solvedCols;
+ /** Diagonal elements of the R matrix in the Q.R. decomposition. */
+ private double[] diagR;
+ /** Norms of the columns of the jacobian matrix. */
+ private double[] jacNorm;
+ /** Coefficients of the Householder transforms vectors. */
+ private double[] beta;
+ /** Columns permutation array. */
+ private int[] permutation;
+ /** Rank of the jacobian matrix. */
+ private int rank;
+ /** Levenberg-Marquardt parameter. */
+ private double lmPar;
+ /** Parameters evolution direction associated with lmPar. */
+ private double[] lmDir;
+ /** Positive input variable used in determining the initial step bound. */
+ private final double initialStepBoundFactor;
+ /** Desired relative error in the sum of squares. */
+ private final double costRelativeTolerance;
+ /** Desired relative error in the approximate solution parameters. */
+ private final double parRelativeTolerance;
+ /** Desired max cosine on the orthogonality between the function vector
+ * and the columns of the jacobian. */
+ private final double orthoTolerance;
+ /** Threshold for QR ranking. */
+ private final double qrRankingThreshold;
+ /** Weighted residuals. */
+ private double[] weightedResidual;
+ /** Weighted Jacobian. */
+ private double[][] weightedJacobian;
+
+ /**
+ * Build an optimizer for least squares problems with default values
+ * for all the tuning parameters (see the {@link
+ * #LevenbergMarquardtOptimizer(double,double,double,double,double)
+ * other contructor}.
+ * The default values for the algorithm settings are:
+ *
+ * - Initial step bound factor: 100
+ * - Cost relative tolerance: 1e-10
+ * - Parameters relative tolerance: 1e-10
+ * - Orthogonality tolerance: 1e-10
+ * - QR ranking threshold: {@link Precision#SAFE_MIN}
+ *
+ */
+ public X init() {
+ this.init1(100, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN);
+ }
+
+
+
+ /**
+ * Build an optimizer for least squares problems with default values
+ * for some of the tuning parameters (see the {@link
+ * #LevenbergMarquardtOptimizer(double,double,double,double,double)
+ * other contructor}.
+ * The default values for the algorithm settings are:
+ *
+ * - Initial step bound factor}: 100
+ * - QR ranking threshold}: {@link Precision#SAFE_MIN}
+ *
+ *
+ * @param costRelativeTolerance Desired relative error in the sum of
+ * squares.
+ * @param parRelativeTolerance Desired relative error in the approximate
+ * solution parameters.
+ * @param orthoTolerance Desired max cosine on the orthogonality between
+ * the function vector and the columns of the Jacobian.
+ */
+ public X init0(double costRelativeTolerance,
+ double parRelativeTolerance,
+ double orthoTolerance) {
+ this.init1(100,
+ costRelativeTolerance, parRelativeTolerance, orthoTolerance,
+ Precision.SAFE_MIN);
+ }
+
+ /**
+ * The arguments control the behaviour of the default convergence checking
+ * procedure.
+ * Additional criteria can defined through the setting of a {@link
+ * ConvergenceChecker}.
+ *
+ * @param initialStepBoundFactor Positive input variable used in
+ * determining the initial step bound. This bound is set to the
+ * product of initialStepBoundFactor and the euclidean norm of
+ * {@code diag * x} if non-zero, or else to {@code initialStepBoundFactor}
+ * itself. In most cases factor should lie in the interval
+ * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value.
+ * @param costRelativeTolerance Desired relative error in the sum of
+ * squares.
+ * @param parRelativeTolerance Desired relative error in the approximate
+ * solution parameters.
+ * @param orthoTolerance Desired max cosine on the orthogonality between
+ * the function vector and the columns of the Jacobian.
+ * @param threshold Desired threshold for QR ranking. If the squared norm
+ * of a column vector is smaller or equal to this threshold during QR
+ * decomposition, it is considered to be a zero vector and hence the rank
+ * of the matrix is reduced.
+ */
+ public X init1(double initialStepBoundFactor,
+ double costRelativeTolerance,
+ double parRelativeTolerance,
+ double orthoTolerance,
+ double threshold) {
+ this.initialStepBoundFactor = initialStepBoundFactor;
+ this.costRelativeTolerance = costRelativeTolerance;
+ this.parRelativeTolerance = parRelativeTolerance;
+ this.orthoTolerance = orthoTolerance;
+ this.qrRankingThreshold = threshold;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected PointVectorValuePair doOptimize() {
+ final int nR = getTarget().length; // Number of observed data.
+ final double[] currentPoint = getStartPoint();
+ final int nC = currentPoint.length; // Number of parameters.
+
+ // arrays shared with the other private methods
+ solvedCols = FastMath.min(nR, nC);
+ diagR = new double[nC];
+ jacNorm = new double[nC];
+ beta = new double[nC];
+ permutation = new int[nC];
+ lmDir = new double[nC];
+
+ // local point
+ double delta = 0;
+ double xNorm = 0;
+ double[] diag = new double[nC];
+ double[] oldX = new double[nC];
+ double[] oldRes = new double[nR];
+ double[] oldObj = new double[nR];
+ double[] qtf = new double[nR];
+ double[] work1 = new double[nC];
+ double[] work2 = new double[nC];
+ double[] work3 = new double[nC];
+
+ final RealMatrix weightMatrixSqrt = getWeightSquareRoot();
+
+ // Evaluate the function at the starting point and calculate its norm.
+ double[] currentObjective = computeObjectiveValue(currentPoint);
+ double[] currentResiduals = computeResiduals(currentObjective);
+ PointVectorValuePair current = new PointVectorValuePair(currentPoint, currentObjective);
+ double currentCost = computeCost(currentResiduals);
+
+ // Outer loop.
+ lmPar = 0;
+ boolean firstIteration = true;
+ int iter = 0;
+ final ConvergenceChecker checker = getConvergenceChecker();
+ while (true) {
+ ++iter;
+ final PointVectorValuePair previous = current;
+
+ // QR decomposition of the jacobian matrix
+ qrDecomposition(computeWeightedJacobian(currentPoint));
+
+ weightedResidual = weightMatrixSqrt.operate(currentResiduals);
+ for (int i = 0; i < nR; i++) {
+ qtf[i] = weightedResidual[i];
+ }
+
+ // compute Qt.res
+ qTy(qtf);
+
+ // now we don't need Q anymore,
+ // so let jacobian contain the R matrix with its diagonal elements
+ for (int k = 0; k < solvedCols; ++k) {
+ int pk = permutation[k];
+ weightedJacobian[k][pk] = diagR[pk];
+ }
+
+ if (firstIteration) {
+ // scale the point according to the norms of the columns
+ // of the initial jacobian
+ xNorm = 0;
+ for (int k = 0; k < nC; ++k) {
+ double dk = jacNorm[k];
+ if (dk == 0) {
+ dk = 1.0;
+ }
+ double xk = dk * currentPoint[k];
+ xNorm += xk * xk;
+ diag[k] = dk;
+ }
+ xNorm = FastMath.sqrt(xNorm);
+
+ // initialize the step bound delta
+ delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
+ }
+
+ // check orthogonality between function vector and jacobian columns
+ double maxCosine = 0;
+ if (currentCost != 0) {
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = jacNorm[pj];
+ if (s != 0) {
+ double sum = 0;
+ for (int i = 0; i <= j; ++i) {
+ sum += weightedJacobian[i][pj] * qtf[i];
+ }
+ maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost));
+ }
+ }
+ }
+ if (maxCosine <= orthoTolerance) {
+ // Convergence has been reached.
+ setCost(currentCost);
+ return current;
+ }
+
+ // rescale if necessary
+ for (int j = 0; j < nC; ++j) {
+ diag[j] = FastMath.max(diag[j], jacNorm[j]);
+ }
+
+ // Inner loop.
+ for (double ratio = 0; ratio < 1.0e-4;) {
+
+ // save the state
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ oldX[pj] = currentPoint[pj];
+ }
+ final double previousCost = currentCost;
+ double[] tmpVec = weightedResidual;
+ weightedResidual = oldRes;
+ oldRes = tmpVec;
+ tmpVec = currentObjective;
+ currentObjective = oldObj;
+ oldObj = tmpVec;
+
+ // determine the Levenberg-Marquardt parameter
+ determineLMParameter(qtf, delta, diag, work1, work2, work3);
+
+ // compute the new point and the norm of the evolution direction
+ double lmNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ lmDir[pj] = -lmDir[pj];
+ currentPoint[pj] = oldX[pj] + lmDir[pj];
+ double s = diag[pj] * lmDir[pj];
+ lmNorm += s * s;
+ }
+ lmNorm = FastMath.sqrt(lmNorm);
+ // on the first iteration, adjust the initial step bound.
+ if (firstIteration) {
+ delta = FastMath.min(delta, lmNorm);
+ }
+
+ // Evaluate the function at x + p and calculate its norm.
+ currentObjective = computeObjectiveValue(currentPoint);
+ currentResiduals = computeResiduals(currentObjective);
+ current = new PointVectorValuePair(currentPoint, currentObjective);
+ currentCost = computeCost(currentResiduals);
+
+ // compute the scaled actual reduction
+ double actRed = -1.0;
+ if (0.1 * currentCost < previousCost) {
+ double r = currentCost / previousCost;
+ actRed = 1.0 - r * r;
+ }
+
+ // compute the scaled predicted reduction
+ // and the scaled directional derivative
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double dirJ = lmDir[pj];
+ work1[j] = 0;
+ for (int i = 0; i <= j; ++i) {
+ work1[i] += weightedJacobian[i][pj] * dirJ;
+ }
+ }
+ double coeff1 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ coeff1 += work1[j] * work1[j];
+ }
+ double pc2 = previousCost * previousCost;
+ coeff1 = coeff1 / pc2;
+ double coeff2 = lmPar * lmNorm * lmNorm / pc2;
+ double preRed = coeff1 + 2 * coeff2;
+ double dirDer = -(coeff1 + coeff2);
+
+ // ratio of the actual to the predicted reduction
+ ratio = (preRed == 0) ? 0 : (actRed / preRed);
+
+ // update the step bound
+ if (ratio <= 0.25) {
+ double tmp =
+ (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
+ if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) {
+ tmp = 0.1;
+ }
+ delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
+ lmPar /= tmp;
+ } else if ((lmPar == 0) || (ratio >= 0.75)) {
+ delta = 2 * lmNorm;
+ lmPar *= 0.5;
+ }
+
+ // test for successful iteration.
+ if (ratio >= 1.0e-4) {
+ // successful iteration, update the norm
+ firstIteration = false;
+ xNorm = 0;
+ for (int k = 0; k < nC; ++k) {
+ double xK = diag[k] * currentPoint[k];
+ xNorm += xK * xK;
+ }
+ xNorm = FastMath.sqrt(xNorm);
+
+ // tests for convergence.
+ if (checker != null) {
+ // we use the vectorial convergence checker
+ if (checker.converged(iter, previous, current)) {
+ setCost(currentCost);
+ return current;
+ }
+ }
+ } else {
+ // failed iteration, reset the previous values
+ currentCost = previousCost;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ currentPoint[pj] = oldX[pj];
+ }
+ tmpVec = weightedResidual;
+ weightedResidual = oldRes;
+ oldRes = tmpVec;
+ tmpVec = currentObjective;
+ currentObjective = oldObj;
+ oldObj = tmpVec;
+ // Reset "current" to previous values.
+ current = new PointVectorValuePair(currentPoint, currentObjective);
+ }
+
+ // Default convergence criteria.
+ if ((FastMath.abs(actRed) <= costRelativeTolerance &&
+ preRed <= costRelativeTolerance &&
+ ratio <= 2.0) ||
+ delta <= parRelativeTolerance * xNorm) {
+ setCost(currentCost);
+ return current;
+ }
+
+ // tests for termination and stringent tolerances
+ // (2.2204e-16 is the machine epsilon for IEEE754)
+ if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
+ throw "TOO_SMALL_COST_RELATIVE_TOLERANCE: " + costRelativeTolerance;
+ } else if (delta <= 2.2204e-16 * xNorm) {
+ throw "TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE: " + parRelativeTolerance;
+ } else if (maxCosine <= 2.2204e-16) {
+ throw "TOO_SMALL_ORTHOGONALITY_TOLERANCE: " + orthoTolerance;
+ }
+ }
+ }
+ }
+
+ /**
+ * Determine the Levenberg-Marquardt parameter.
+ * This implementation is a translation in Java of the MINPACK
+ * lmpar
+ * routine.
+ * This method sets the lmPar and lmDir attributes.
+ * The authors of the original fortran function are:
+ *
+ * - Argonne National Laboratory. MINPACK project. March 1980
+ * - Burton S. Garbow
+ * - Kenneth E. Hillstrom
+ * - Jorge J. More
+ *
+ * Luc Maisonobe did the Java translation.
+ *
+ * @param qy array containing qTy
+ * @param delta upper bound on the euclidean norm of diagR * lmDir
+ * @param diag diagonal matrix
+ * @param work1 work array
+ * @param work2 work array
+ * @param work3 work array
+ */
+ private void determineLMParameter(double[] qy, double delta, double[] diag,
+ double[] work1, double[] work2, double[] work3) {
+ final int nC = weightedJacobian[0].length;
+
+ // compute and store in x the gauss-newton direction, if the
+ // jacobian is rank-deficient, obtain a least squares solution
+ for (int j = 0; j < rank; ++j) {
+ lmDir[permutation[j]] = qy[j];
+ }
+ for (int j = rank; j < nC; ++j) {
+ lmDir[permutation[j]] = 0;
+ }
+ for (int k = rank - 1; k >= 0; --k) {
+ int pk = permutation[k];
+ double ypk = lmDir[pk] / diagR[pk];
+ for (int i = 0; i < k; ++i) {
+ lmDir[permutation[i]] -= ypk * weightedJacobian[i][pk];
+ }
+ lmDir[pk] = ypk;
+ }
+
+ // evaluate the function at the origin, and test
+ // for acceptance of the Gauss-Newton direction
+ double dxNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = diag[pj] * lmDir[pj];
+ work1[pj] = s;
+ dxNorm += s * s;
+ }
+ dxNorm = FastMath.sqrt(dxNorm);
+ double fp = dxNorm - delta;
+ if (fp <= 0.1 * delta) {
+ lmPar = 0;
+ return;
+ }
+
+ // if the jacobian is not rank deficient, the Newton step provides
+ // a lower bound, parl, for the zero of the function,
+ // otherwise set this bound to zero
+ double sum2;
+ double parl = 0;
+ if (rank == solvedCols) {
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] *= diag[pj] / dxNorm;
+ }
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = 0; i < j; ++i) {
+ sum += weightedJacobian[i][pj] * work1[permutation[i]];
+ }
+ double s = (work1[pj] - sum) / diagR[pj];
+ work1[pj] = s;
+ sum2 += s * s;
+ }
+ parl = fp / (delta * sum2);
+ }
+
+ // calculate an upper bound, paru, for the zero of the function
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = 0; i <= j; ++i) {
+ sum += weightedJacobian[i][pj] * qy[i];
+ }
+ sum /= diag[pj];
+ sum2 += sum * sum;
+ }
+ double gNorm = FastMath.sqrt(sum2);
+ double paru = gNorm / delta;
+ if (paru == 0) {
+ // 2.2251e-308 is the smallest positive real for IEE754
+ paru = 2.2251e-308 / FastMath.min(delta, 0.1);
+ }
+
+ // if the input par lies outside of the interval (parl,paru),
+ // set par to the closer endpoint
+ lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
+ if (lmPar == 0) {
+ lmPar = gNorm / dxNorm;
+ }
+
+ for (int countdown = 10; countdown >= 0; --countdown) {
+
+ // evaluate the function at the current value of lmPar
+ if (lmPar == 0) {
+ lmPar = FastMath.max(2.2251e-308, 0.001 * paru);
+ }
+ double sPar = FastMath.sqrt(lmPar);
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] = sPar * diag[pj];
+ }
+ determineLMDirection(qy, work1, work2, work3);
+
+ dxNorm = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ double s = diag[pj] * lmDir[pj];
+ work3[pj] = s;
+ dxNorm += s * s;
+ }
+ dxNorm = FastMath.sqrt(dxNorm);
+ double previousFP = fp;
+ fp = dxNorm - delta;
+
+ // if the function is small enough, accept the current value
+ // of lmPar, also test for the exceptional cases where parl is zero
+ if ((FastMath.abs(fp) <= 0.1 * delta) ||
+ ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) {
+ return;
+ }
+
+ // compute the Newton correction
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] = work3[pj] * diag[pj] / dxNorm;
+ }
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ work1[pj] /= work2[j];
+ double tmp = work1[pj];
+ for (int i = j + 1; i < solvedCols; ++i) {
+ work1[permutation[i]] -= weightedJacobian[i][pj] * tmp;
+ }
+ }
+ sum2 = 0;
+ for (int j = 0; j < solvedCols; ++j) {
+ double s = work1[permutation[j]];
+ sum2 += s * s;
+ }
+ double correction = fp / (delta * sum2);
+
+ // depending on the sign of the function, update parl or paru.
+ if (fp > 0) {
+ parl = FastMath.max(parl, lmPar);
+ } else if (fp < 0) {
+ paru = FastMath.min(paru, lmPar);
+ }
+
+ // compute an improved estimate for lmPar
+ lmPar = FastMath.max(parl, lmPar + correction);
+
+ }
+ }
+
+ /**
+ * Solve a*x = b and d*x = 0 in the least squares sense.
+ * This implementation is a translation in Java of the MINPACK
+ * qrsolv
+ * routine.
+ * This method sets the lmDir and lmDiag attributes.
+ * The authors of the original fortran function are:
+ *
+ * - Argonne National Laboratory. MINPACK project. March 1980
+ * - Burton S. Garbow
+ * - Kenneth E. Hillstrom
+ * - Jorge J. More
+ *
+ * Luc Maisonobe did the Java translation.
+ *
+ * @param qy array containing qTy
+ * @param diag diagonal matrix
+ * @param lmDiag diagonal elements associated with lmDir
+ * @param work work array
+ */
+ private void determineLMDirection(double[] qy, double[] diag,
+ double[] lmDiag, double[] work) {
+
+ // copy R and Qty to preserve input and initialize s
+ // in particular, save the diagonal elements of R in lmDir
+ for (int j = 0; j < solvedCols; ++j) {
+ int pj = permutation[j];
+ for (int i = j + 1; i < solvedCols; ++i) {
+ weightedJacobian[i][pj] = weightedJacobian[j][permutation[i]];
+ }
+ lmDir[j] = diagR[pj];
+ work[j] = qy[j];
+ }
+
+ // eliminate the diagonal matrix d using a Givens rotation
+ for (int j = 0; j < solvedCols; ++j) {
+
+ // prepare the row of d to be eliminated, locating the
+ // diagonal element using p from the Q.R. factorization
+ int pj = permutation[j];
+ double dpj = diag[pj];
+ if (dpj != 0) {
+ Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
+ }
+ lmDiag[j] = dpj;
+
+ // the transformations to eliminate the row of d
+ // modify only a single element of Qty
+ // beyond the first n, which is initially zero.
+ double qtbpj = 0;
+ for (int k = j; k < solvedCols; ++k) {
+ int pk = permutation[k];
+
+ // determine a Givens rotation which eliminates the
+ // appropriate element in the current row of d
+ if (lmDiag[k] != 0) {
+
+ final double sin;
+ final double cos;
+ double rkk = weightedJacobian[k][pk];
+ if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
+ final double cotan = rkk / lmDiag[k];
+ sin = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
+ cos = sin * cotan;
+ } else {
+ final double tan = lmDiag[k] / rkk;
+ cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
+ sin = cos * tan;
+ }
+
+ // compute the modified diagonal element of R and
+ // the modified element of (Qty,0)
+ weightedJacobian[k][pk] = cos * rkk + sin * lmDiag[k];
+ final double temp = cos * work[k] + sin * qtbpj;
+ qtbpj = -sin * work[k] + cos * qtbpj;
+ work[k] = temp;
+
+ // accumulate the tranformation in the row of s
+ for (int i = k + 1; i < solvedCols; ++i) {
+ double rik = weightedJacobian[i][pk];
+ final double temp2 = cos * rik + sin * lmDiag[i];
+ lmDiag[i] = -sin * rik + cos * lmDiag[i];
+ weightedJacobian[i][pk] = temp2;
+ }
+ }
+ }
+
+ // store the diagonal element of s and restore
+ // the corresponding diagonal element of R
+ lmDiag[j] = weightedJacobian[j][permutation[j]];
+ weightedJacobian[j][permutation[j]] = lmDir[j];
+ }
+
+ // solve the triangular system for z, if the system is
+ // singular, then obtain a least squares solution
+ int nSing = solvedCols;
+ for (int j = 0; j < solvedCols; ++j) {
+ if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
+ nSing = j;
+ }
+ if (nSing < solvedCols) {
+ work[j] = 0;
+ }
+ }
+ if (nSing > 0) {
+ for (int j = nSing - 1; j >= 0; --j) {
+ int pj = permutation[j];
+ double sum = 0;
+ for (int i = j + 1; i < nSing; ++i) {
+ sum += weightedJacobian[i][pj] * work[i];
+ }
+ work[j] = (work[j] - sum) / lmDiag[j];
+ }
+ }
+
+ // permute the components of z back to components of lmDir
+ for (int j = 0; j < lmDir.length; ++j) {
+ lmDir[permutation[j]] = work[j];
+ }
+ }
+
+ /**
+ * Decompose a matrix A as A.P = Q.R using Householder transforms.
+ * As suggested in the P. Lascaux and R. Theodor book
+ * Analyse numérique matricielle appliquée à
+ * l'art de l'ingénieur (Masson, 1986), instead of representing
+ * the Householder transforms with uk unit vectors such that:
+ *
+ * Hk = I - 2uk.ukt
+ *
+ * we use k non-unit vectors such that:
+ *
+ * Hk = I - betakvk.vkt
+ *
+ * where vk = ak - alphak ek.
+ * The betak coefficients are provided upon exit as recomputing
+ * them from the vk vectors would be costly.
+ * This decomposition handles rank deficient cases since the tranformations
+ * are performed in non-increasing columns norms order thanks to columns
+ * pivoting. The diagonal elements of the R matrix are therefore also in
+ * non-increasing absolute values order.
+ *
+ * @param jacobian Weighted Jacobian matrix at the current point.
+ * @exception ConvergenceException if the decomposition cannot be performed
+ */
+ private void qrDecomposition(RealMatrix jacobian) {
+ // Code in this class assumes that the weighted Jacobian is -(W^(1/2) J),
+ // hence the multiplication by -1.
+ weightedJacobian = jacobian.scalarMultiply(-1).getData();
+
+ final int nR = weightedJacobian.length;
+ final int nC = weightedJacobian[0].length;
+
+ // initializations
+ for (int k = 0; k < nC; ++k) {
+ permutation[k] = k;
+ double norm2 = 0;
+ for (int i = 0; i < nR; ++i) {
+ double akk = weightedJacobian[i][k];
+ norm2 += akk * akk;
+ }
+ jacNorm[k] = FastMath.sqrt(norm2);
+ }
+
+ // transform the matrix column after column
+ for (int k = 0; k < nC; ++k) {
+
+ // select the column with the greatest norm on active components
+ int nextColumn = -1;
+ double ak2 = Double.NEGATIVE_INFINITY;
+ for (int i = k; i < nC; ++i) {
+ double norm2 = 0;
+ for (int j = k; j < nR; ++j) {
+ double aki = weightedJacobian[j][permutation[i]];
+ norm2 += aki * aki;
+ }
+ if (!isFinite(norm2)) {
+ throw "UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN";
+ }
+ if (norm2 > ak2) {
+ nextColumn = i;
+ ak2 = norm2;
+ }
+ }
+ if (ak2 <= qrRankingThreshold) {
+ rank = k;
+ return;
+ }
+ int pk = permutation[nextColumn];
+ permutation[nextColumn] = permutation[k];
+ permutation[k] = pk;
+
+ // choose alpha such that Hk.u = alpha ek
+ double akk = weightedJacobian[k][pk];
+ double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
+ double betak = 1.0 / (ak2 - akk * alpha);
+ beta[pk] = betak;
+
+ // transform the current column
+ diagR[pk] = alpha;
+ weightedJacobian[k][pk] -= alpha;
+
+ // transform the remaining columns
+ for (int dk = nC - 1 - k; dk > 0; --dk) {
+ double gamma = 0;
+ for (int j = k; j < nR; ++j) {
+ gamma += weightedJacobian[j][pk] * weightedJacobian[j][permutation[k + dk]];
+ }
+ gamma *= betak;
+ for (int j = k; j < nR; ++j) {
+ weightedJacobian[j][permutation[k + dk]] -= gamma * weightedJacobian[j][pk];
+ }
+ }
+ }
+ rank = solvedCols;
+ }
+
+ /**
+ * Compute the product Qt.y for some Q.R. decomposition.
+ *
+ * @param y vector to multiply (will be overwritten with the result)
+ */
+ private void qTy(double[] y) {
+ final int nR = weightedJacobian.length;
+ final int nC = weightedJacobian[0].length;
+
+ for (int k = 0; k < nC; ++k) {
+ int pk = permutation[k];
+ double gamma = 0;
+ for (int i = k; i < nR; ++i) {
+ gamma += weightedJacobian[i][pk] * y[i];
+ }
+ gamma *= beta[pk];
+ for (int i = k; i < nR; ++i) {
+ y[i] -= gamma * weightedJacobian[i][pk];
+ }
+ }
+ }
+}
diff --git a/web/app/optim/lm.js b/web/app/optim/lm.js
new file mode 100644
index 00000000..e69de29b