mirror of
https://github.com/xibyte/jsketcher
synced 2025-12-09 18:02:50 +01:00
bfgs impl
This commit is contained in:
parent
7e663d037e
commit
0aef7f366a
1 changed files with 191 additions and 0 deletions
191
web/app/math/optim.js
Normal file
191
web/app/math/optim.js
Normal file
|
|
@ -0,0 +1,191 @@
|
|||
|
||||
|
||||
TCAD.optim = {};
|
||||
|
||||
// convergence Rough 1e-8
|
||||
// convergence Fine 1e-10
|
||||
TCAD.math.solve_BFGS = function(subsys, convergence, smallF) {
|
||||
|
||||
var xsize = subsys.params.length;
|
||||
if (xsize == 0) {
|
||||
return "Success";
|
||||
}
|
||||
|
||||
var Dy; //Vector
|
||||
var xdir; //Vector
|
||||
var D = new TCAD.math.Matrix(xsize, xsize);
|
||||
D.identity();
|
||||
var B = new TCAD.math.Matrix(xsize, xsize);
|
||||
B.identity();
|
||||
var x = new TCAD.math.Vector(xsize);
|
||||
var grad = new TCAD.math.Vector(xsize);
|
||||
var h = new TCAD.math.Vector(xsize);
|
||||
var y = new TCAD.math.Vector(xsize);
|
||||
|
||||
// Initial unknowns vector and initial gradient vector
|
||||
subsys.fillParams(x.data);
|
||||
subsys.calcGrad(grad.data);
|
||||
|
||||
// Initial search direction oposed to gradient (steepest-descent)
|
||||
xdir = grad.scalarMultiply(-1);
|
||||
TCAD.math.lineSearch(subsys, xdir);
|
||||
var err = subsys.errorSquare();
|
||||
|
||||
h = x.copy();
|
||||
subsys.fillParams(x.data);
|
||||
h = x.subtract(h); // = x - xold
|
||||
|
||||
var maxIterNumber = 100 * xsize;
|
||||
var divergingLim = 1e6*err + 1e12;
|
||||
|
||||
for (var iter=1; iter < maxIterNumber; iter++) {
|
||||
|
||||
if (h.norm() <= convergence || err <= smallF)
|
||||
break;
|
||||
if (err > divergingLim || err != err) // check for diverging and NaN
|
||||
break;
|
||||
|
||||
y = grad.copy();
|
||||
subsys.calcGrad(grad.data);
|
||||
y = grad.subtract(y); // = grad - gradold
|
||||
|
||||
var hty = h.dot(y);
|
||||
//make sure that hty is never 0
|
||||
if (hty == 0)
|
||||
hty = .0000000001;
|
||||
|
||||
Dy = D.multiply(y);
|
||||
|
||||
var ytDy = y.dot(Dy);
|
||||
|
||||
//Now calculate the BFGS update on D
|
||||
|
||||
|
||||
var B_x_h = B.multiply(h);
|
||||
var hT_x_B = h.transpose().multiply(B);
|
||||
var yT = y.transpose();
|
||||
var y_x_yT = y.multiply(yT);
|
||||
var yT_x_h = y.dot(h);
|
||||
|
||||
//Now calculate the BFGS update on B
|
||||
B = B.add( y_x_yT.scalarMultiply( 1 / yT_x_h ) );
|
||||
B = B.subtract( ( B_x_h.multiply(hT_x_B) ).scalarMultiply( 1./h.dot(B_x_h) ) );
|
||||
|
||||
|
||||
D = D.add( h.scalarMultiply(( 1.+ytDy/hty ) / hty).multiply( h.transpose() ) );
|
||||
D = D.subtract((
|
||||
h.multiply(Dy.transpose())
|
||||
.add(Dy.multiply(h.transpose()))
|
||||
).scalarMultiply(1. / hty)
|
||||
);
|
||||
|
||||
|
||||
|
||||
// xdir = D.multiply(grad).scalarMultiply(-1);
|
||||
xdir = B.multiply(grad).scalarMultiply(-1);
|
||||
// xdir = grad.scalarMultiply(-1);
|
||||
TCAD.math.lineSearch(subsys, xdir);
|
||||
err = subsys.errorSquare();
|
||||
|
||||
h = x.copy();
|
||||
subsys.fillParams(x.data);
|
||||
h = x.subtract(h); // = x - xold
|
||||
}
|
||||
|
||||
if (err <= smallF)
|
||||
return "Success";
|
||||
if (h.norm() <= convergence)
|
||||
return "Converged";
|
||||
return "Failed";
|
||||
};
|
||||
|
||||
|
||||
TCAD.math.solve_SD = function(subsys) {
|
||||
var i = 0;
|
||||
var grad = new TCAD.math.Vector(subsys.params.length);
|
||||
while (subsys.errorSquare() > 0.1 ) {
|
||||
subsys.calcGrad(grad.data);
|
||||
var xdir = grad.scalarMultiply(-1);
|
||||
TCAD.math.lineSearch(subsys, xdir);
|
||||
if (i ++ > 100) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
console.log(subsys.errorSquare());
|
||||
};
|
||||
|
||||
TCAD.math.lineSearch = function(subsys, xdir) {
|
||||
|
||||
var f1,f2,f3,alpha1,alpha2,alpha3,alphaStar;
|
||||
|
||||
var alphaMax = 1; //maxStep(xdir);
|
||||
|
||||
var x;
|
||||
var x0 = new TCAD.math.Vector(subsys.params.length);
|
||||
|
||||
//Save initial values
|
||||
subsys.fillParams(x0.data);
|
||||
|
||||
//Start at the initial position alpha1 = 0
|
||||
alpha1 = 0.;
|
||||
f1 = subsys.errorSquare();
|
||||
|
||||
//Take a step of alpha2 = 1
|
||||
alpha2 = 1.;
|
||||
x = x0.add(xdir.scalarMultiply(alpha2));
|
||||
subsys.setParams2(x.data);
|
||||
f2 = subsys.errorSquare();
|
||||
|
||||
//Take a step of alpha3 = 2*alpha2
|
||||
alpha3 = alpha2*2;
|
||||
x = x0.add(xdir.scalarMultiply(alpha3));
|
||||
subsys.setParams2(x.data);
|
||||
f3 = subsys.errorSquare();
|
||||
|
||||
//Now reduce or lengthen alpha2 and alpha3 until the minimum is
|
||||
//Bracketed by the triplet f1>f2<f3
|
||||
while (f2 > f1 || f2 > f3) {
|
||||
if (f2 > f1) {
|
||||
//If f2 is greater than f1 then we shorten alpha2 and alpha3 closer to f1
|
||||
//Effectively both are shortened by a factor of two.
|
||||
alpha3 = alpha2;
|
||||
f3 = f2;
|
||||
alpha2 = alpha2 / 2;
|
||||
x = x0.add( xdir.scalarMultiply(alpha2 ));
|
||||
subsys.setParams2(x.data);
|
||||
f2 = subsys.errorSquare();
|
||||
}
|
||||
else if (f2 > f3) {
|
||||
if (alpha3 >= alphaMax)
|
||||
break;
|
||||
//If f2 is greater than f3 then we increase alpha2 and alpha3 away from f1
|
||||
//Effectively both are lengthened by a factor of two.
|
||||
alpha2 = alpha3;
|
||||
f2 = f3;
|
||||
alpha3 = alpha3 * 2;
|
||||
x = x0.add( xdir.scalarMultiply(alpha3));
|
||||
subsys.setParams2(x.data);
|
||||
f3 = subsys.errorSquare();
|
||||
}
|
||||
}
|
||||
//Get the alpha for the minimum f of the quadratic approximation
|
||||
alphaStar = alpha2 + ((alpha2-alpha1)*(f1-f3))/(3*(f1-2*f2+f3));
|
||||
|
||||
//Guarantee that the new alphaStar is within the bracket
|
||||
if (alphaStar >= alpha3 || alphaStar <= alpha1)
|
||||
alphaStar = alpha2;
|
||||
|
||||
if (alphaStar > alphaMax)
|
||||
alphaStar = alphaMax;
|
||||
|
||||
if (alphaStar != alphaStar)
|
||||
alphaStar = 0.;
|
||||
|
||||
//Take a final step to alphaStar
|
||||
x = x0 .add( xdir.scalarMultiply( alphaStar ) );
|
||||
subsys.setParams2(x.data);
|
||||
|
||||
return alphaStar;
|
||||
|
||||
};
|
||||
|
||||
Loading…
Reference in a new issue