# -*- coding: utf-8 -*- # This file is part of beets. # Copyright 2016, Pieter Mulder. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Calculate acoustic information and submit to AcousticBrainz. """ from __future__ import division, absolute_import, print_function import hashlib import json import os import subprocess import tempfile import distutils import requests from beets import plugins from beets import util from beets import ui class ABSubmitError(Exception): """Raised when failing to analyse file with extractor.""" def call(args): """Execute the command and return its output. Raise a AnalysisABSubmitError on failure. """ try: return util.command_output(args) except subprocess.CalledProcessError as e: raise ABSubmitError( u'{0} exited with status {1}'.format(args[0], e.returncode) ) class AcousticBrainzSubmitPlugin(plugins.BeetsPlugin): def __init__(self): super(AcousticBrainzSubmitPlugin, self).__init__() self.config.add({'extractor': u''}) self.extractor = self.config['extractor'].as_str() if self.extractor: self.extractor = util.normpath(self.extractor) # Expicit path to extractor if not os.path.isfile(self.extractor): raise ui.UserError( u'Extractor command does not exist: {0}.'. format(self.extractor) ) else: # Implicit path to extractor, search for it in path self.extractor = 'streaming_extractor_music' try: call([self.extractor]) except OSError: raise ui.UserError( u'No extractor command found: please install the ' u'extractor binary from http://acousticbrainz.org/download' ) except ABSubmitError: # Extractor found, will exit with an error if not called with # the correct amount of arguments. pass # Get the executable location on the system, # needed to calculate the sha1 hash. self.extractor = distutils.spawn.find_executable(self.extractor) # Calculate extractor hash. self.extractor_sha = hashlib.sha1() with open(self.extractor, 'rb') as extractor: self.extractor_sha.update(extractor.read()) self.extractor_sha = self.extractor_sha.hexdigest() supported_formats = {'mp3', 'ogg', 'oga', 'flac', 'mp4', 'm4a', 'm4r', 'm4b', 'm4p', 'aac', 'wma', 'asf', 'mpc', 'wv', 'spx', 'tta', '3g2', 'aif', 'aiff', 'ape'} base_url = 'https://acousticbrainz.org/api/v1/{mbid}/low-level' def commands(self): cmd = ui.Subcommand( 'absubmit', help=u'calculate and submit AcousticBrainz analysis' ) cmd.func = self.command return [cmd] def command(self, lib, opts, args): # Get items from arguments items = lib.items(ui.decargs(args)) for item in items: analysis = self._get_analysis(item) if analysis: self._submit_data(item, analysis) def _get_analysis(self, item): mbid = item['mb_trackid'] # If file has no mbid skip it. if not mbid: self._log.info(u'Not analysing {}, missing ' u'musicbrainz track id.', item) return None # If file format is not supported skip it. if item['format'].lower() not in self.supported_formats: self._log.info(u'Not analysing {}, file not in ' u'supported format.', item) return None # Temporary file to save extractor output to, extractor only works # if an output file is given. Here we use a temporary file to copy # the data into a python object and then remove the file from the # system. tmp_file, filename = tempfile.mkstemp(suffix='.json') try: # Close the file, so the extractor can overwrite it. try: call([self.extractor, util.syspath(item.path), filename]) except ABSubmitError as e: self._log.error( u'Failed to analyse {item} for AcousticBrainz: {error}', item=item, error=e ) return None with open(filename) as tmp_file: analysis = json.loads(tmp_file.read()) # Add the hash to the output. analysis['metadata']['version']['essentia_build_sha'] = \ self.extractor_sha return analysis finally: try: os.remove(filename) except OSError as e: # errno 2 means file does not exist, just ignore this error. if e.errno != 2: raise def _submit_data(self, item, data): mbid = item['mb_trackid'] headers = {'Content-Type': 'application/json'} response = requests.post(self.base_url.format(mbid=mbid), json=data, headers=headers) # Test that request was successful and raise an error on failure. if response.status_code != 200: try: message = response.json()['message'] except (ValueError, KeyError) as e: message = u'unable to get error message: {}'.format(e) self._log.error( u'Failed to submit AcousticBrainz analysis of {item}: ' u'{message}).', item=item, message=message ) else: self._log.debug(u'Successfully submitted AcousticBrainz analysis ' u'for {}.', item)