mirror of
https://github.com/beetbox/beets.git
synced 2025-12-14 04:23:56 +01:00
initial commit
This commit is contained in:
parent
887e02c2ae
commit
8f9e35f081
1 changed files with 188 additions and 0 deletions
188
beetsplug/learn.py
Normal file
188
beetsplug/learn.py
Normal file
|
|
@ -0,0 +1,188 @@
|
|||
# This file is part of beets.
|
||||
# Copyright 2013, Pedro Silva.
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining
|
||||
# a copy of this software and associated documentation files (the
|
||||
# "Software"), to deal in the Software without restriction, including
|
||||
# without limitation the rights to use, copy, modify, merge, publish,
|
||||
# distribute, sublicense, and/or sell copies of the Software, and to
|
||||
# permit persons to whom the Software is furnished to do so, subject to
|
||||
# the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be
|
||||
# included in all copies or substantial portions of the Software.
|
||||
|
||||
"""Learn things about a Beets library.
|
||||
"""
|
||||
import logging
|
||||
|
||||
import beets
|
||||
|
||||
PLUGIN = 'cluster'
|
||||
log = logging.getLogger('beets')
|
||||
|
||||
|
||||
def _transform(items, features, kind):
|
||||
import numpy as np
|
||||
import sklearn.preprocessing
|
||||
import sklearn.feature_extraction
|
||||
|
||||
if kind == 'categorical':
|
||||
X = [dict((f, getattr(i, f, np.nan)) for f in features) for i in items]
|
||||
X = sklearn.feature_extraction.DictVectorizer().fit_transform(X)
|
||||
elif kind == 'text':
|
||||
X = [getattr(i, f, np.nan) for f in features for i in items]
|
||||
X = sklearn.feature_extraction.text.TfidfVectorizer().fit_transform(X)
|
||||
elif kind == 'numeric':
|
||||
X = [[getattr(i, f, np.nan) for f in features] for i in items]
|
||||
else:
|
||||
raise Exception('Dont\' know kind of feature %s' % kind)
|
||||
|
||||
return sklearn.preprocessing.Imputer().fit_transform(X)
|
||||
|
||||
|
||||
def _fit(X, k):
|
||||
import sklearn.cluster
|
||||
kmeans = sklearn.cluster.MiniBatchKMeans(k).fit(X)
|
||||
return kmeans
|
||||
|
||||
|
||||
def _predict(kmeans, X):
|
||||
labels = kmeans.predict(X)
|
||||
return labels
|
||||
|
||||
|
||||
def _reduce(X, c):
|
||||
import sklearn.decomposition
|
||||
pca = sklearn.decomposition.PCA(n_components=c).fit_transform(X)
|
||||
return pca
|
||||
|
||||
|
||||
def _encode(y, scale):
|
||||
import sklearn.preprocessing
|
||||
labels = sklearn.preprocessing.LabelEncoder().fit_transform(y)
|
||||
if scale:
|
||||
labels = labels.reshape((len(y), 1)).astype(float)
|
||||
labels = sklearn.preprocessing.MinMaxScaler().fit_transform(labels)
|
||||
labels = labels.reshape((len(y),))
|
||||
return labels
|
||||
|
||||
|
||||
def _plot(X, groups, savefig):
|
||||
import matplotlib.cm
|
||||
import matplotlib.pyplot
|
||||
|
||||
n_samples, n_features = X.shape
|
||||
fig = matplotlib.pyplot.figure()
|
||||
colors = matplotlib.cm.jet(_encode(groups, True))
|
||||
|
||||
if n_features == 1:
|
||||
matplotlib.pyplot.scatter(xrange(len(X)), X[:, 0], c=colors, s=30)
|
||||
elif n_features == 2:
|
||||
matplotlib.pyplot.scatter(X[:, 0], X[:, 1], c=colors, s=30)
|
||||
elif n_features >= 3:
|
||||
import mpl_toolkits.mplot3d
|
||||
if n_features > 3:
|
||||
X = _reduce(X, 3)
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=colors, s=30)
|
||||
|
||||
if savefig:
|
||||
matplotlib.pyplot.savefig(savefig)
|
||||
else:
|
||||
matplotlib.pyplot.show()
|
||||
|
||||
|
||||
class LearnPlugin(beets.plugins.BeetsPlugin):
|
||||
'''Learn things about a Beets library.
|
||||
'''
|
||||
def __init__(self):
|
||||
super(LearnPlugin, self).__init__()
|
||||
|
||||
self.config.add({'attributes': []})
|
||||
self.config.add({'clusters': 2})
|
||||
self.config.add({'format': ''})
|
||||
self.config.add({'kind': 'numeric'})
|
||||
self.config.add({'plot': False})
|
||||
self.config.add({'savefig': False})
|
||||
self.config.add({'test': []})
|
||||
self.config.add({'train': []})
|
||||
|
||||
self._command = beets.ui.Subcommand('learn', help=__doc__)
|
||||
|
||||
self._command.parser.add_option('-a', '--attributes',
|
||||
action='callback', dest='attributes',
|
||||
metavar='LIST',
|
||||
callback=beets.ui.vararg_callback,
|
||||
help='list of attributes to cluster')
|
||||
|
||||
self._command.parser.add_option('-c', '--clusters',
|
||||
action='store', metavar='K',
|
||||
type=int,
|
||||
help='how many clusters to find')
|
||||
|
||||
self._command.parser.add_option('-f', '--format',
|
||||
action='store', type=str,
|
||||
help='print with custom format',
|
||||
metavar='FMT')
|
||||
|
||||
self._command.parser.add_option('-k', '--kind',
|
||||
action='store',
|
||||
choices=['numeric',
|
||||
'categorical',
|
||||
'text'],
|
||||
help='type of attributes (numeric, \
|
||||
categorical numeric]')
|
||||
|
||||
self._command.parser.add_option('-p', '--plot',
|
||||
action='store_true',
|
||||
help='plot results')
|
||||
|
||||
self._command.parser.add_option('-s', '--savefig',
|
||||
action='store',
|
||||
help='plot results to file')
|
||||
|
||||
self._command.parser.add_option('-T', '--test',
|
||||
action='callback', dest='test',
|
||||
metavar='QUERY',
|
||||
callback=beets.ui.vararg_callback,
|
||||
help='test set query')
|
||||
|
||||
self._command.parser.add_option('-t', '--train',
|
||||
action='callback', dest='train',
|
||||
metavar='QUERY',
|
||||
callback=beets.ui.vararg_callback,
|
||||
help='training set query')
|
||||
|
||||
def commands(self):
|
||||
def _learn(lib, opts, args):
|
||||
|
||||
self.config.set_args(opts)
|
||||
kind = self.config['kind'].get(str)
|
||||
features = self.config['attributes'].get(list)
|
||||
fmt = self.config['format'].get(str)
|
||||
k = self.config['clusters'].get(int)
|
||||
plot = self.config['plot'].get(bool)
|
||||
savefig = self.config['savefig'].get(str)
|
||||
test = self.config['test'].get(list)
|
||||
train = self.config['train'].get(list)
|
||||
if not fmt:
|
||||
fmt = '$albumartist - $album - $title'
|
||||
fmt += ' - {0}'
|
||||
|
||||
items = lib.items(beets.ui.decargs(train or args))
|
||||
X = _transform(items, features, kind)
|
||||
kmeans = _fit(X, k)
|
||||
|
||||
items = lib.items(beets.ui.decargs(test or args))
|
||||
X = _transform(items, features, kind)
|
||||
labels = _predict(kmeans, X)
|
||||
|
||||
if plot or savefig:
|
||||
_plot(X, labels, savefig)
|
||||
|
||||
for item, label in zip(items, labels):
|
||||
beets.ui.print_obj(item, lib, fmt=fmt.format(label))
|
||||
|
||||
self._command.func = _learn
|
||||
return [self._command]
|
||||
Loading…
Reference in a new issue